Posts Tagged with "ISO 26262"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.
posted by sakurai on June 20, 2019 #115

2nd Edition Annex F.3,4,5

次にF.3を見てみます。F.3は「評価対象のフォールト又は故障モードの選択基準の決定」となっています。本来はFMEDAのフォールトイベントの評価として全ての故障モードを評価すべきでしょうが、それだと数千件も評価しなければならないため、本節で故障モードの絞り込みを行うのだと思われます。

ちなみに、PMHFへの寄与率を厳密に考えると、PMHFのSPF部分とDPF部分がありますが、DPF部分は故障モードの組み合わせであるため、以下は全てPMHFの値(SPF+DPF)への、故障モードのSPF部分の寄与率と言う意味となります。

  1. SPFまたはRFに関して、DCが90%以下の全てのフォールト又は故障モード
  2. PMHFの寄与率が2%以上の全てのフォールト又は故障モード
  3. PMHFの寄与率が上位20位以内の全てのフォールト又は故障モード

この選択基準で絞り込むと、本例ではたまたま以下の値になります。

  1. 2件の故障モード⇒PMHFへの寄与率は95.68%
  2. 2件の故障モード(上記と同じ)⇒PMHFへの寄与率は95.68%
  3. 20件の故障モード⇒PMHFへの寄与率は99.89%

F.5では、これらは全てPMHFへの寄与率が95%以上であるから問題無しとしています。逆にそうであるなら、直接的に

  1. PMHFへの寄与率が95%を超えるまでの上位からの全てのフォールト又は故障モード

とするほうが自然ではないでしょうか。ちなみにこのような絞り込み条件を設定すると、2件の故障モード⇒PMHFへの寄与率は95.68%となり、上記1.及び2.と同様2件の故障モードを分析すれば良いことになります。以下に故障モードに関してPMHFへの寄与率が大きい順にリストします。

コンポーネント名 故障率
[FIT]
SR? 故障モード 分布[%] SM DC[%] λRF PMHFへの
寄与率[%]
PMHFへの
寄与率累積[%]
1 μC 100 Yes all 50 SM4 90 5.000 91.13 91.13
2 T61 5 Yes short 50 SM2 90 0.250 4.56 95.68

従って、分析方法をまとめれば、「 PMHFへの寄与率が95%を超えるまでの上位からの全てのフォールト又は故障モード」について絞り込みを実施し、それぞれに故障モードについて、安全方策がとられているかどうかを確認することになります。このときなぜ95%以上としたのかを問われたら、2nd Edition規格Annex F.3を参照したとなります。


左矢前のブログ 次のブログ右矢

posted by sakurai on June 19, 2019 #114

2nd Edition Annex F

2nd Editionで新設されたAnnex F のFMEDAシートを図114.1に示します。

図%%.1
図114.1 2nd Edition, Annex F FMEDA

前稿と比較して、右端の欄が2つ増えており、重要なのはDPF_detです。Annex Fの「F.2 PMHF評価を提供する安全分析」において、 $$ PMHF_{\mathrm{est}}=\lambda_{\mathrm{SPF}}+\lambda_{\mathrm{RF}}+\color{red}{\lambda_{\mathrm{DPF,det}}}\color{green}{\lambda_{\mathrm{DPF,lat}}}T_{\mathrm{lifetime}}\tag{114.1} $$ でPMHFを近似していると書かれています。$\lambda_{\mathrm{SPF}}$、$\lambda_{\mathrm{RF}}$はSPFMを求めるため、$\color{green}{\lambda_{\mathrm{DPF,lat}}}$もLFMを求めるために既に表にあるため、$\color{red}{\lambda_{\mathrm{DPF,det}}}$が新たに表に必要となります。

ただし、弊社では(114.1)には異論があります。正しいPMHF式は、1st Editionの3番目の一般式を示すと、 $$ M_{\mathrm{PMHF}}=\lambda_{\mathrm{RF}}+\lambda_{\mathrm{IF,DPF}}\lambda_{\mathrm{SM,lat}}T_{\mathrm{lifetime}}\tag{114.2} $$ です。これは、1st Editionで述べられているとおり故障順序によらない式であり、$\lambda_{\mathrm{SM,lat}}T_{\mathrm{lifetime}}\gg\lambda_{\mathrm{SM,det}}T_{\mathrm{service}}$かつ、IFがアンリペアラブル、SMがリペアラブルの場合に成り立つことは検証済みです。

(114.2)と(114.1)を比較すると、DPFの項の2つの故障率が異なっています。(114.1)では主機能と安全機構の値を合わせた故障率$\color{red}{\lambda_{\mathrm{DPF,det}}}$及び$\color{green}{\lambda_{\mathrm{DPF,lat}}}$を使用しています。双方をIFとSMの和に分解すれば、 $$ \color{red}{\lambda_{\mathrm{DPF,det}}} =\lambda_{\mathrm{IF,DPF,det}}+\lambda_{\mathrm{SM,DPF,det}}=K_{\mathrm{IF,RF}}\lambda_{\mathrm{IF}}K_{\mathrm{IF,MPF}}+\lambda_{\mathrm{SM}}K_{\mathrm{SM,MPF}} \tag{114.3} $$ であり、たまたま$K_{\mathrm{SM,MPF}}=0$、$K_{\mathrm{IF,MPF}}=1$であることから、(114.3)は $$ \color{red}{\lambda_{\mathrm{DPF,det}}}=K_{\mathrm{IF,RF}}\lambda_{\mathrm{IF}}=\lambda_{\mathrm{IF,DPF}}\tag{114.4} $$ となります。本来はPMHF式(114.2)を鑑みると、これは$\lambda_{\mathrm{IF,DPF}}$とするべきです。また、同様に$\color{green}{\lambda_{\mathrm{DPF,lat}}}$もIFとSMの部分に分解すれば、 $$ \color{green}{\lambda_{\mathrm{DPF,lat}}} =\lambda_{\mathrm{IF,DPF,lat}}+\lambda_{\mathrm{SM,DPF,lat}}=K_{\mathrm{IF,RF}}\lambda_{\mathrm{IF}}(1-K_{\mathrm{IF,MPF}})+\lambda_{\mathrm{SM}}(1-K_{\mathrm{SM,MPF}}) \tag{114.5} $$ ですが、たまたま前述の$K_{\mathrm{SM,MPF}}=0$、$K_{\mathrm{IF,MPF}}=1$の条件から(114.5)は $$ \color{green}{\lambda_{\mathrm{DPF,lat}}}=\lambda_{\mathrm{SM}}=\lambda_{\mathrm{SM,lat}}\tag{114.6} $$ となり、値は結果的に正しくなります。しかしながら、この条件が常に成り立つとは言えないのと、より正確な値を$T_{\mathrm{service}}$を用いて算出するためには、IFとSMの値を合わせないほうが良く、結論として(114.2)を用いるべきと考えます。


左矢前のブログ 次のブログ右矢

posted by sakurai on June 18, 2019 #113

2nd Edition Annex E

次に2nd Editionで新設されたAnnex F - PMHFの評価例について説明します。対象となる回路はAnnex EのFMEDAで解析した以下の回路です。

図%%.1
図113.1 2nd Edition, AnnexE 対象回路

それに基づくAnnex EのFMEDAシートの一部を示します。

図%%.2
図113.2 2nd Edition, Annex E FMEDA

これらは1st Editionの同じくAnnex Eに掲載されており、基本的に変わっていません。


左矢前のブログ 次のブログ右矢

posted by sakurai on June 15, 2019 #112

1st Editionと2nd Editionとの変化点

本稿ではISO 26262:2011を1st Edition、ISO 26262:2018を2nd Editionと呼びます。さて、7年間の議論を経て発効された2nd Editionではどこがどう変わったのでしょうか?

本ブログではハードウェア領域においての変化点をご紹介していきます。ISO 26262においてのハードウェア領域は主にPart 5、Part 10、及びPart 11となります。

Part 5

本文中の細かいところも変更されていますが、一見して目に付くのがAnnexの章立てが変更されていることです。

  • 1st Edition Annex F (スケーリングファクタ)の廃止
  • 2nd Edition Annex F (PMHFの評価例)の追加
  • 2nd Edition Annex G (PMHFバジェッティング例)の追加
  • 2nd Edition Annex H(レイテントフォールト取扱い例)の追加

これらひとつひとつについて、「ISO 26262変化点セミナー」でご説明予定ですが、ブログでも簡単に解説していきたいと思います。

Annex F (スケーリングファクタ)の廃止

スケーリングファクタは異なる故障率データベースからの故障率を混ぜて使用する場合、土台を合わせないと正しく使用できないことから、それについての注意点を記述した章でした。ところが2nd Editionでは削除されています。元々、1st Editionでは9.2.4.7にのみスケーリングファクタが書かれており、そこからAnnex Fへ参照となっていたものです。この9.2.4.7はPMHF手法による、安全目標侵害確率の評価の最後の章となっています。つまり1st Editionでは、PMHFを正しく求める方法としてスケーリングファクタを導出し、故障率の土台を合わせて計算することを推奨していました。

一方2nd Editionでは、章が削除されたとはいえ、スケーリングの議論は8.4.3に新設されています。8.4は故障率を異なるデータソースから算出する話なので、スケーリングについて触れるにはちょうど良い場所です。さらに備考に、スケーリングを正しく行わない場合SPFM/LFMにも悪影響が及ぶとあり、スケーリング対象をPMHFのみからアーキテクチャメトリクスまで広げていることは妥当と考えます。

まとめると、独自の章としては削除されたものの、スケーリングは一層重要になります。


左矢前のブログ 次のブログ右矢

Kパラメータは条件付き確率か (3)

posted by sakurai on May 12, 2019 #100

前稿(99.1)において、時刻$t$から$t+dt$において、IFのフォールトがVSG抑止される微小確率を求めると、 $$ \Pr\{\mathrm{IF\ prevented}\cap\mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ =\Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ \cdot\Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}\cdot\Pr\{\mathrm{IF\ not\ failed\ before\ }t\}\\ =K_{\mathrm{IF,FMC,RF}}\lambda_{\mathrm{IF}}R_{\mathrm{IF}}(t)dt \tag{100.1} $$ ただし、 $$ \Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ at\ }t\cap\mathrm{IF\ not\ failed\ before\ }t\}=K_{\mathrm{IF,FMC,RF}},\\ \Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}=\lambda_{\mathrm{IF}}dt,\\ \Pr\{\mathrm{IF\ not\ failed\ before\ }t\}=R_{\mathrm{IF}}(t) $$ となりましたが、「DCはSMのアーキテクチャにより決定される」ことを前提とし、フォールト発生とフォールト検出は独立な事象と考えれば、同じ確率式は、 $$ \Pr\{\mathrm{IF\ prevented}\cap\mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ =\Pr\{\mathrm{IF\ preventable}\}\cdot\Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}\\ \cdot\Pr\{\mathrm{IF\ not\ failed\ before\ }t\}=K_{\mathrm{IF,FMC,RF}}\lambda_{\mathrm{IF}}R_{\mathrm{IF}}(t)dt \tag{100.2} $$ ここで、 $$ \Pr\{\mathrm{IF\ preventable}\}=K_{\mathrm{IF,FMC,RF}}, \\ \Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}=\lambda_{\mathrm{IF}}dt,\\ \Pr\{\mathrm{IF\ not\ failed\ before\ }t\}=R_{\mathrm{IF}}(t) $$ と求められます。従って、(100.1)の$\Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ at\ }t\}$という確率的な$t$の関数を、(100.2)の$\Pr\{\mathrm{IF\ preventable}\}$という定数に置き換えることができます。

2nd SMの属性である$K_{\mathrm{FMC,MPF}}$についても同様の議論が成り立ち、Kパラメータは条件付き確率ではなく、アーキテクチャ的に決定している能力(定数)として扱います。結論として、

$$ K_{\mathrm{IF,FMC,RF}}:=\Pr\{\mathrm{IF\ preventable}\}\tag{100.3} $$ $$ K_{\mathrm{IF,FMC,MPF}}:=\Pr\{\mathrm{IF\ detectable}\}\tag{100.4} $$ $$ K_{\mathrm{SM,FMC,MPF}}:=\Pr\{\mathrm{SM\ detectable}\}\tag{100.5} $$


左矢前のブログ 次のブログ右矢

Kパラメータは条件付き確率か (2)

posted by sakurai on May 10, 2019 #99

(98.1)の定義を用いれば、時刻$t$から$t+dt$において発生するIFのフォールトについて、VSG抑止される確率を求めると、条件付き確率のチェインルールを用いれば、 $$ \Pr\{\mathrm{IF\ prevented}\cap\mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ =\Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ \cdot\Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}\cdot\Pr\{\mathrm{IF\ not\ failed\ before\ }t\}\tag{99.1} $$ ここで、それぞれ $$ \Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}=K_{\mathrm{IF,FMC,RF}},\\ \Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}=\lambda_{\mathrm{IF}}dt,\\ \Pr\{\mathrm{IF\ not\ failed\ before\ }t\}=R_{\mathrm{IF}}(t) \tag{99.2} $$ であるから、 $$ (99.1)=K_{\mathrm{IF,FMC,RF}}\lambda_{\mathrm{IF}}R_{\mathrm{IF}}(t)dt\tag{99.3} $$ と、IFに関する故障率や信頼度関数で表すことができます。

問題1
しかしながら、Kパラメータ($K_{\mathrm{FMC,MPF}}$及び$K_{\mathrm{FMC,RF}}$)が条件付き確率として一定だと矛盾が起きます。抑止条件が確率的に作用することにより、例えば1回目にはVSG抑止されたフォールトが、2回目にはVSG抑止されないことが起こりえます。あるいは1回目にはリペアされたフォールトが2回目にはリペアされないことが起こりえます。検出が確率的になされるからとはいえ、同じ故障が検出されたりされなかったりするのは、合理性がありません。

問題2
次に、例えば故障検出率$K_{\mathrm{FMC,MPF}}$について考えると、長時間が経ち故障検出を長く続ける場合を考えます。検出されるフォールトは全量リペアされるのに比べて、検出されないフォールトはどんどん溜まって行き、不信頼度は上昇し続けます。従って、新たにフォールトするうちの検出される部分の比率が高まりそうであるのに、条件付き確率として一定値であると感覚に反します。

フォールト検出のたびにサイコロで検出を決めているならそのようになりますが、一般的には診断カバレージ(Diagnostic Coverage; DC)はSMのアーキテクチャにより決定され、確率的には検出されないとここでは考えることにします。そうすれば、上記の問題点は解消されます。

図%%.1
図99.1 Q(t)のグラフ

問題1
確率的に一定ではなく、アーキテクチャ的に一定量を必ず検出できるとした場合のグラフです。これであれば、$\tau$毎に必ず検出分は修理され、問題はありません。

問題2
これに関しても、アーキテクチャ的に一定量を必ず検出できるとした場合、グラフから見られるように、不信頼度は時間と伴に上昇していきます。


左矢前のブログ 次のブログ右矢

posted by sakurai on April 28, 2019 #98

PMHF式において、あるいはその前提となる故障分類フローにおいて、Kパラメータが2種存在します。 具体的には$K_{\mathrm{FMC,RF}}$と$K_{\mathrm{FMC,MPF}}$の2種類です。それぞれ、1st order SMのVSG抑止率及び2nd order SMのフォールト検出率を意味します。規格では定数のように書かれているので、それぞれ $$ K_{\text{FMC,RF}},\\ K_{\text{FMC,MPF}} $$ と記述できます。

ここで1st order SMとは、主機能IFのフォールトによるSG侵害を抑止する働きを持つSMであり、2nd order SMとは、(主機能やSM等の)エレメントのフォールトがレイテントフォールトとなることを阻止する働きを持つSMです。

さらに、Kパラメータは、主機能とSMにそれぞれ存在するため、IF-SM-2nd SMモデル全体では $$ K_{\mathrm{IF,FMC,RF}},\\ K_{\mathrm{IF,FMC,MPF}},\\ K_{\mathrm{SM,FMC,MPF}} $$ の3種類が存在します。一般的にはSMのフォールトはVSGとならないため、$K_{\mathrm{SM,FMC,RF}}$は存在しません。

さて、当初、例えばこの記事でもこのKパラメータは定数であり、かつ条件付き確率であると解釈していました。例えば、 $$ K_{\mathrm{IF,FMC,RF}}:=\Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed}\},\tag{98.1}\\ K_{\mathrm{IF,FMC,MPF}}:=\Pr\{\mathrm{IF\ detected}\ |\ \mathrm{IF\ prevented}\},\\ K_{\mathrm{SM,FMC,MPF}}:=\Pr\{\mathrm{SM\ detected}\ |\ \mathrm{SM\ prevented}\}\\ $$ と定義されます。

ただし上記は若干省略して書かれており、詳細に書けば、$\Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed} \}$は$\Pr\{\mathrm{VSG\ of\ IF\ is\ prevented}\ |\ \mathrm{IF\ is\ failed} \}$であり、$\Pr\{\mathrm{IF\ detected}\ |\ \mathrm{IF\ prevented}\}$は、$\Pr\{\mathrm{The\ fault\ of\ IF\ is\ detected}\ |\ \mathrm{VSG\ of\ IF\ is\ prevented}\}$となります。

ここで、規格に書かれていない2nd SMの修理率は100%であり、

$$K_\text{SM,FMC,rep}=\Pr\{\text{SM repaired}\ | \text{SM detected}\cap\text{SM failed}\}=1.0$$


左矢前のブログ 次のブログ右矢

posted by sakurai on November 12, 2018 #70

冗長構成とは以下のように定義されます。

  • 冗長構成 --- 機能的に対称な冗長。1oo2の冗長であり、2つのチャネルから成り、主系も従系もどちらも主機能を果たす一方、他方が故障した場合にVSGを抑止するSMの機能を果たす。

この冗長構成サブシステムにPMHFの値は2つあるのでしょうか?

具体例でみてみましょう。図のヘッドライト回路において、マイコンとトランジスタスイッチの両方からヘッドライトを点灯する機能があるとします。両者ともコンビネーションスイッチ情報を読み込み、点灯するものとします。さて、この場合、どちらが主機能でどちらが安全機構でしょうか?

図%%.1
図70.1 非対称冗長システム例

この場合は冗長構成であるため、両方とも主機能となります。両方ともヘッドライト点灯という主目的をはたしているからです。一方で両方とも安全機構です。他方がフォールトしたときに、ライト消灯という、システムとしての機能喪失を抑止するためです。

具体的に数値を入れて見てみます。故障率をそれぞれ、スイッチ入力回路は1FIT、マイコンは100FIT、ドライバ出力回路は1FITとします。仮にマイコン側のチャネルを主機能、反対側をSMとし、主機能とSMの互いのSG侵害防止率を99%とすれば、PMHF第1式は、 $$ M_\mathrm{PMHF}=1.025FIT $$ となります。一方、どちらを主機能と見ても良いので、逆にすれば、 $$ M_\mathrm{PMHF}=0.015FIT $$ となります。このようにPMHFの値は2つあることになります。

しかしながら、設計意図の違いでアイテムのダウン確率が変わるはずがないため、これは明らかに誤りと分かります。論文で指摘したとおり、規格式が冗長に対応しておらず、MとSMに関して対称でないためです。

2nd Editionでは、MとSMに関して対称となっているので、本問題が解決されているように見えますが、既述のとおりある問題が残っています。


左矢前のブログ 次のブログ右矢

posted by sakurai on November 5, 2018 #69

デュアルポイントフェイリャ

次にDPFについて、弊社が考える式とどこが相違しているかを見ていきます。

まず、SMがVSGとならない場合のパターン1式は特定条件(※1)でのみ合っています。この条件は1st Edition規格第1式とも同じです。次にパターン2は特定条件(※1)において前述のように2倍だけ異なっています。この2倍の理由は不明です。追記:4年後に判明したのでこの記事に記載しました。
※1 $K_{IF,lat}=0\cap K_{SM1,det}=1$の場合。これを言い換えると、IFはVSGの可能性があるが修理不可能、かつ、SM1はVSGの可能性無しで修理可能。

さらにパターン3、4式は特定条件(※2)でのみ合っています。単にパターン1, 2をひっくり返した(IFとSM1を入れ替えた)式のように見えます。
※2 $K_{SM1,lat}=0\cap K_{IF,det}=1$の場合。これを言い換えると、SM1はVSGの可能性があるが修理不可能、かつ、IFはVSGの可能性無しで修理可能。

これは以下の条件からくるものと推測します。以下は2nd Edition Part10 8.3.2.3 Table 2の引用です。

表69.1
First fault:SM1⇒Second fault:IF First fault:IF⇒Second fault:SM1
Cannot notify the driver Pattern 1 Pattern 3
Can notify the driver Pattern 2 Pattern 4

つまり、Pattern1及び2はIFフォールトによるVSGであり、SM1は修理系、IFは非修理系を仮定しています。 一方、Pattern3及び4はSM1フォールトによるVSGであり、Pattern1及び2のIF/SM1を入れ替えたものとなっているところから推測すればIFは修理系、SM1は非修理系を仮定しています。

いずれも最初のフォールトが起きるエレメントは、upしたりdownしたりを繰り返しても良いのですが(=修理可能という意味)、2番目にフォールトが起きるエレメントは、(最初のフォールトがリペアされた場合)downしたりupしたりするはずが、2番目にdownすることしか許されていません。これは非修理系を意味します。つまり後からフォールトするエレメントの制約が強すぎます。このことは言葉の定義だけで理解されるものではなく、その仮定から導出された1st Editionの式の意味まで考えて初めて理解されることです。

いずれにしろ、この前提はIFもSM1も$t=0$において修理系という一般的なサブシステムに対して、修理不可能という制約をかけすぎているため、PMHFの過大評価につながります。

弊社が考えるPMHFの一般式

IFとSM1が$t=0$において修理系という条件で、マルコフ状態遷移図を書き、確率微分方程式を立て積分して平均PUDを算出した式において、Edition 1の方法で上界を求めた式は、 $$ M_{PMHF}=\lambda_{IF,RF}+\img[-1.35em]{/images/withinseminar.png}\tag{69.1} $$ となります。

規格の式(図68.1)は、実際よりも過剰な※1または※2のみで成立する式です。


左矢前のブログ 次のブログ右矢

2nd EditionにおけるPMHF式

posted by sakurai on October 29, 2018 #68

ISO 26262 2nd Edition

今年春発行と予定されていた2nd EditionはFDISの状況となっていますが、正式発行が遅れているようです。FDISは最終的な規格から語句のレベルしか修正されないとのことで、FDISで検討すればほぼ問題無いと考えられます。

さて、PMHFの部分はだいぶ変更されています。公式が変わっただけでなく、SMが安全目標侵害するケースまで想定されています。元々弊社では一般的なサブシステムを検討対象とした論文も投稿しており、両方のエレメントが安全目標侵害する場合を対象としていましたので、好都合です。

図68.1のパターン1と2はいずれもSM1が先にフォールトし、次にIF(Intended Function)がフォールトするケースです。そのうち、パターン1はフォールトが検出されない場合、パターン2はフォールトが検出される場合です。一方、パターン3と4はいずれもその逆順にフォールトするケースです。そのうちパターン3はフォールトが検出されない場合、パターン4はフォールトが検出される場合です。

図68.1
図68.1 2nd Edition, Part10-8.3.2.4 PMHF規格 第1式

実はパターン1と2あるいは3と4は特に分ける必要はありません。弊社の式に従えば不稼働率の関数$Q(t)$(59.8)で自然に表されるからです。一方、パターン1と3、2と4はフォールト順序なので、マルコフ状態遷移図に基づく検討が必要です。

重要 1st Editionでは主機能が非修理系であるという前提のもとに、ケース分類で確率を求めています。ところが、2nd Editionも同じ非修理系前提で、ケース分類でPMHF式を求めています。本来対称的に扱うのであれば、両方とも修理系にすべきです。そうすると、主機能であってもVSGとならないフォールト(MPフォールト)を起した後、2nd SMにより検出される部分は修理されることになります。すると、本ケース分けには当てはまらなくなります。例えば、主機能がMPフォールトし、2nd SMにより検出され修理される。次にSM1がMPフォールトし、検出され修理される。これが繰り返されることは十分あり得ますが、規格のケース分類だとこの場合は、Pattern3+Parttern4に相当します。これはマルコフ状態遷移図を書いて初めて理解されることなので、ISO 26262のPMHF理解のためにはマルコフ状態遷移図は必須です。

シングルポイントフェイリャ

ここで、$\lambda_{SPF}, \lambda_{RF}$は定義が書かれていませんので、IFによるものか、SM1によるものも含むのかが定かではありません。しかしながら、

図68.2
図68.2 2nd Edition, Part10-8.3.2.4 PMHF規格説明

このように、SM1のPVSG、つまりSM1の安全目標侵害の可能性があると、ECCの例まで挙げて書かれているので、おそらく$\lambda_{RF}$は以下のようになると考えられます。これは、サブシステムを構成する2つのエレメントがどちらも主機能かつSMとなるような一般モデルで考えます。具体的には冗長サブシステムの場合が相当します。 $$ \lambda_{RF}=\lambda_{IF,RF}+\lambda_{SM1,RF}=(1-K_{FMC,SM1,RF})\cdot \lambda_{IF}+(1-K_{FMC,SM2,RF})\cdot \lambda_{SM1}\tag{68.1} $$


左矢前のブログ 次のブログ右矢


ページ: