Posts Tagged with "PUA"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.
posted by sakurai on February 11, 2024 #740

過去記事において不稼働度(Point Unavailability; PUA)を求めました。ここでは別の方式で不稼働度を求めてみます。

SMのフォールトが生起したとき、それがレイテントフォールトとなるかならないかは2nd SMの故障検出率で決定されます。これを$K_\text{SM,MPF}$とすると、

$$ K_\text{SM,MPF}=\Pr\{\text{detected }|\text{ failed at }t\}\tag{740.1} $$ ではなく、 $$ K_\text{SM,MPF}=\Pr\{\text{detectable}\}\tag{740.2} $$ としてPUAである$Q(t)$を求めました。ここでは式(740.1)に基づいて導出します。これは、修理が完全に確率的に行われることを意味し、検出されるされないは故障の原因によらずにSMの能力のみに依存することになります。従って不合理であると考えられます。

不稼働度$Q(t)$の一般式

稼働度(Point Availability; PA)の公式から不稼働度は以下のように表せます。

$$ Q(t)=F(t)-\int_0^{T_\text{lifetime}}m(x)R(t-x)dx\\ =F(t)-\sum_{i=1}^nM(i\tau)R(t-i\tau)\tag{740.3} $$ 意味としては、フォールトが起きて累積していく分から故障が修理され、それが現在まで生き残っている分を引いたものとなります。ここで$M(i\tau)$は定期修理点$i\tau$における修理率です。

Kパラメータの適用

さて、式(740.3)に式(740.1)を適用すれば、定期修理点$i\tau$における修理率$M(i\tau)$はその時点での不稼働確率$Q(i\tau)$に故障検出率を$K_\text{SM,MPF}$かけたものとなることから、

$$ Q(t)=F(t)-\sum_{i=1}^n K_\text{SM,MPF}Q(i\tau)R(t-i\tau)\tag{740.4} $$ このQ(t)は定期修理区間毎に変わるので、定期修理区間を$i=0,1,2,...$で表せば、

$$ \begin{eqnarray} \left\{ \begin{array}{l} Q_0(t)&=&0\quadただしt=0\\ Q_1(t)&=&F(t)\quadただしt\in(0, \tau]\\ Q_n(t)&=&F(t)-\sum_{i=1}^{n-1}K_\text{SM,MPF}Q_i(i\tau)R(t-i\tau)\quadただしt\ge\tau \tag{740.5} \end{array} \right. \end{eqnarray} $$

右辺に求めたい$Q(t)$を持つため、解析的に求めるのは困難であり、再帰的あるいは数値的に求めるしかありません。よってこれより次の$Q_2(t)$を求めれば、 $$ \begin{eqnarray} Q_2(t)&=&F(t)-K_\text{SM,MPF}Q_1(\tau)R(t-\tau)\\ &=&F(t)-K_\text{SM,MPF}F(\tau)R(t-\tau)\quadただしt\in(\tau, 2\tau] \tag{740.6} \end{eqnarray} $$

さらに次の$Q_3(t)$は、 $$ \begin{eqnarray} Q_3(t)&=&F(t)-K_\text{SM,MPF}Q_1(\tau)R(t-\tau)-K_\text{SM,MPF}Q_2(2\tau)R(t-2\tau)\\ &=&F(t)-K_\text{SM,MPF}\left[F(\tau)R(t-\tau)+\left(F(2\tau)-K_\text{SM,MPF}F(\tau)R(2\tau-\tau)\right)\right]R(t-2\tau)\\ &=&F(t)-K_\text{SM,MPF}\left[F(\tau)R(t-\tau)+\left(F(2\tau)-K_\text{SM,MPF}F(\tau)R(\tau)\right)R(t-2\tau)\right]\\ &&ただしt\in(2\tau, 3\tau] \tag{740.7} \end{eqnarray} $$ このようにかなり複雑な形になるため、実用的には数値計算することになります。


左矢前のブログ 次のブログ右矢

posted by sakurai on September 6, 2023 #658

定期検査・修理説明図

以下は過去記事#347に掲載した図です。

図347.1
図347.1 定期検査と時刻$t$の関係

ISO 26262の前提は定期検査・修理です。具体的には検査周期を$\tau$として、時刻$\tau_i=i\tau (i=1, 2, ..., n, n=\lfloor\frac{t}{\tau}\rfloor)$において検査・修理が行われます。

1. 定期修理

過去記事で分析したように、稼働度$A_\text{SM}(t)$の修理を含めた式に従えば、SMの不稼働度$Q_\text{SM}(t)$は、修理密度を$m(x)$として、(658.1)となります。 $$ \require{color} \definecolor{pink}{rgb}{1.0,0.8,1.0} \begin{eqnarray} Q_\text{SM}(t)&=&F_\text{SM}(t)-\int_0^t m(x)\colorbox{pink}{$R_\text{SM}(t-x)$}dx\\ &=&F_\text{SM}(t)-KF_\text{SM}(\tau)\sum_{i=1}^n R_\text{SM}(t-i\tau)\\ &=&F_\text{SM}(t)-K(1-R_\text{SM}(\tau))\sum_{i=1}^n R_\text{SM}(t-i\tau)\\ &=&F_\text{SM}(t)-K\sum_{i=1}^n R_\text{SM}(t-i\tau)+K\sum_{i=1}^n R_\text{SM}(t-(i-1)\tau)\\ &=&F_\text{SM}(t)-KR_\text{SM}(t-n\tau)+KR_\text{SM}(t)\\ &=&\img[-1.35em]{/images/withinseminar.png} \end{eqnarray} \tag{658.1} $$

ただし、$K$は各検査におけるフォールト検出率、$u:=t-n\tau$です。

(658.1)のピンクで示したように、例えば区間$[(i-1)i\tau, i\tau)$においてフォールトが発生し、その区間末で修理された場合、その後$t$までフォールトしないという前提の式となっています。これは、その後の区間$[(j-1)i\tau, j\tau), i<j$において再度フォールトする場合を含めると、次にその区間$[(j-1)i\tau, j\tau)$でのフォールトを考える場合にダブルカウントになるためです。

ここで(658.1)を書き直し以下の式を考えます。 $$ Q_\text{SM}(t)=F_\text{SM}(t)-K_\text{SM,MPF}\left[F_\text{SM}(t)-F_\text{SM}(u)\right] \tag{658.2} $$ 不稼働度は基本的には不信頼度から$t$までに検出(=修理)された分、すなわち$K_\text{SM,MPF}$がかかる項を引きます。さらに修理分のうち、$u:=t-n\tau$の期間のフォールトを引き戻し、その部分は修理されないことを表しています。

2. 1回修理

一方、本来は定期検査・修理が原則なのですが、1回修理としての考え方は、次の事実を利用します。

  • 最近の検査時刻による修理:
     ・ 検出可能フォールトの場合、$\tau_n$での検査時には、それまでの故障(もしあれば)が検出・修理されます。したがって、$\tau_n$以前の検査時刻での故障の有無は、時刻$t$における不稼働度に影響しません。
     ・ 検出不可フォールトの場合、修理は行われないため、修理回数は不稼働度に影響しません。

  • 次回検査までの期間: 時刻$t$における不稼働度を考える際、$\tau_n$以降、次回の検査$\tau_{n+1}$までの期間に生じる故障が関連します。この期間内での故障の有無、および$\tau_n$での検出の可否が、時刻$t$における不稼働度に影響します。

従って、細々と修理するのとまとめて一遍に修理するのでは効果が同じです。不稼働度の求め方は2種類考案したので、それらを以下に示します。

2.1 検査可否と検査前後のフォールト確率

過去記事で分析したように、検査の可否により、事象を分類します。

  • 検査可であるフォールトはどこで起きても、次の検査時点である$\tau_i$で全て修理されるため、$\tau_n$でも全て修理されています。従って$\tau_n$から$t$までのフォールトのみが問題となります。
  • 検査不可であるフォールトは、2nd SMが無いことと等価であるため、全期間である$0$から$t$までのフォールトが問題となります。

これにより(658.3)が得られます。

$$ \begin{eqnarray} Q_\text{SM}(t)&=& \Pr\{ (\text{fault detected at }\tau_n\ \cap\ \text{SM receives a fault in }(\tau_n, t]) \ \cup\\ &&\ \ \ \ (\overline{\text{fault detected at }\tau_n} \cap \text{SM receives a fault in }(0, t]) \}\\ &=&\img[-1.35em]{/images/withinseminar.png} \end{eqnarray} \tag{658.3} $$

2.2 検査検査前後のフォールト確率と検査可否の全ての組み合わせ

過去記事で分析したように、$\tau_n$での検出可否、$\tau_n$前と$\tau_n$後のフォールト生起有無の8通りの組み合わせを全て数え上げ、不稼働になる条件を洗い出します。

これにより(658.4)が得られます。

$$ \begin{eqnarray} Q_\text{SM}(t)&=&\Pr\{(\text{fault detected at }\tau_n\ \cap\\ &&\ \ \ \ [\text{SM receives a fault in }(0, \tau_n]\cap\ \text{SM receives a fault in }(\tau_n, t]\ \cup\\ &&\ \ \ \ \overline{\text{SM receives a fault in }(0, \tau_n]}\cap\ \text{SM receives a fault in }(\tau_n, t]])\ \cup\\ &&(\overline{\text{fault detected at }\tau_n} \cap \\ &&\ \ \ \ [\text{SM receives a fault in }(0, \tau_n]\cap\ \text{SM receives a fault in }(\tau_n, t]\ \cup\\ &&\ \ \ \ \overline{\text{SM receives a fault in }(0, \tau_n]}\cap\ \text{SM receives a fault in }(\tau_n, t]\ \cup\\ &&\ \ \ \ \text{SM receives a fault in }(0, \tau_n]\cap\ \overline{\text{SM receives a fault in }(\tau_n, t]}])\}\\ &=&\img[-1.35em]{/images/withinseminar.png} \end{eqnarray} \tag{658.4} $$

3. 不稼働度$Q(t)$のメリット

規格第2版ではPMHF式を導出する際に、2nd SMがドライバーへの通知可否により場合分けを行っています。ところがこの不稼働度は$\img[-0.9em]{/images/withinseminar.png}$

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

posted by sakurai on September 5, 2023 #657

人間:

間違いです。$F_\text{SM}(\tau_n)$は時刻$\tau_n$での修理によりゼロになります。ところがそれを代入すると、不稼働度は$F_\text{SM}(t)-0=F_\text{SM}(t)$となり、これは$\Pr\{\text{SM receives a fault in }(0,t)\}$となり不合理。本来は$\Pr\{\text{SM receives a fault in }(\tau_n,t)\}$となるはず。この矛盾を解消してください。

ChatGPT: (中略)

申し訳ありません、以前の説明で矛盾の解消に至らなかったことに気づきました。再度考察し、不稼働度を正しく表現しましょう。

検出不可の場合と検出可の場合を組み合わせて不稼働度を考える際、以下の確率を組み合わせる必要があります。

検出不可の場合

  • $ \Pr\{\text{fault not detected at } \tau_n\} = 1 - K $
  • $ \Pr\{\text{SM receives a fault in } (0, t]\} = F_{\text{SM}}(t) $

検出可の場合

  • $ \Pr\{\text{fault detected at } \tau_n\} = K $
  • $ \Pr\{\text{SM receives a fault in } (\tau_n, t]\} $

ここで、検出可の場合において、$ \tau_n $での故障は瞬時に修理されるため、$ F_{\text{SM}}(\tau_n) = 0 $ です。さらに、この時点での不信頼度がリセットされるため、$ \tau_n $から$ t $までの故障生起確率が重要となります。

この確率を表現するために、$ u = t - \tau_n $ と定義されていることを利用し、次のように表現します。

  • $ \Pr\{\text{SM receives a fault in } (\tau_n, t]\} = F_{\text{SM}}(u) $

したがって、不稼働度 $ Q_{\text{SM}}(t) $ は以下のようになります。

$$ Q_{\text{SM}}(t) =\img[-1.35em]{/images/withinseminar.png} $$

この式では、検出不可の場合と検出可の場合を適切に組み合わせ、不稼働度を正しく表現しています。検出可の場合において、$ \tau_n $での故障が瞬時に修理されること、およびその時点での不信頼度がリセットされることを反映しています。


今回は正解を与えずに矛盾を指摘して解消させましたが、うまく正解を導出できました。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

posted by sakurai on September 4, 2023 #656

人間:

$\tau_n$での検出可の確率を$\Pr\{\text{fault detected at }\tau_n\}=K (const.)$ 検出不可の確率を$\Pr\{\text{fault not detected at }\tau_n\}$、 時刻aからbまでにSMにフォールトが起きる確率を$\Pr\{\text{SM receives a fault in }(a, b]\}$ と表記してください。

ChatGPT: (中略)

指定された表記に基づいて、各確率を以下のように定義します。

  • $ \tau_n $での検出可の確率:$ \Pr\{\text{fault detected at } \tau_n\} = K $ (定数)
  • $ \tau_n $での検出不可の確率:$ \Pr\{\text{fault not detected at } \tau_n\} $
  • 時刻$ a $から$ b $までにSMにフォールトが起きる確率:$ \Pr\{\text{SM receives a fault in} (a, b]\} $

これらの確率を用いると、不稼働の条件を以下のように表現できます。

検出不可の場合

$$ \Pr\{\text{fault not detected at } \tau_n\} \cdot \Pr\{\text{SM receives a fault in } (0, t]\} $$

検出可の場合

$$ K \cdot \Pr\{\text{SM receives a fault in } (\tau_n, t]\} $$

上記の式は、検出の可・不可に基づいて、SMが不稼働になる確率を表現しています。

人間:

指数分布するフォールト事象について、以下のことが知られています。 $$\Pr\{\text{fault detected at }\tau_n\}=K (const.)$$ $$\Pr\{\text{SM receives a fault in }(a, b]\}=\int_a^b f_\text{SM}(x)dx = F_\text{SM}(b)-F_\text{SM}(a)$$ ただし、$f_\text{SM}(t)$はPDF, $F_\text{SM}(t)$はCDF tにおける不稼働度$Q_\text{SM}(t)$を、SMの不信頼度$F_\text{SM}(t)$を用いて表現してください。$u:=t-\tau_n$として$\tau$及び$\tau_n$を消去したうえで$t, u$で表現してください。exponential表現は使用しないこと。

ChatGPT:

指定された条件に基づいて、$ t $における不稼働度 $ Q_{\text{SM}}(t) $ を計算し、$ \tau $ 及び $ \tau_n $ を消去して $ t, u $ で表現します。変数 $ u $ は $ u = t - \tau_n $ と定義されています。

まず、前述の不稼働確率をSMの不信頼度 $ F_{\text{SM}}(t) $ として表現するために、以下の式を考えます。

検出不可の場合

$$ \begin{eqnarray} \Pr\{\text{fault not detected at } \tau_n\} \cdot \Pr\{\text{SM receives a fault in } (0, t]\} &=& (1 - K) \cdot (1 - e^{-\lambda t}) \\ &=& (1 - K) \cdot F_{\text{SM}}(t) \end{eqnarray} $$

検出可の場合

$$ \begin{eqnarray} K \cdot \Pr\{\text{SM receives a fault in } (\tau_n, t]\} &=& K \cdot (e^{-\lambda \tau_n} - e^{-\lambda t}) \\ &=& K \cdot (F_{\text{SM}}(\tau_n) - F_{\text{SM}}(t)) \end{eqnarray} $$

これらの式を合計すると、$ t $ における不稼働度 $ Q_{\text{SM}}(t) $ が得られます。

$$ \begin{eqnarray} Q_{\text{SM}}(t) &=& (1 - K) \cdot F_{\text{SM}}(t) + K \cdot (F_{\text{SM}}(\tau_n) - F_{\text{SM}}(t)) \\ &=& (1 - K) \cdot F_{\text{SM}}(t) + K \cdot F_{\text{SM}}(t - u) - K \cdot F_{\text{SM}}(t) \\ &=& F_{\text{SM}}(t) - K \cdot F_{\text{SM}}(t) + K \cdot F_{\text{SM}}(t - u) \end{eqnarray} $$

ここで、exponential表現を使用せず、$ \tau $ 及び $ \tau_n $ を消去して $ t, u $ で表現しました。この式が、指定された条件に基づく不稼働度の表現となります。


計算間違いがあるようです。さらに、単純に積分の式を当てはめても正解が出ません。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (24)

posted by sakurai on August 31, 2023 #654

さらに、過去記事で8通りの事象の分類からの$Q_\text{SM}(t)$導出を実施しましたが、これをChatGPT-4に実行させてみます。

人間:

ISO 26262の範囲では故障率λは一定値をとると考える。従って、フォールトの分布は指数分布となります。

一般にはSM (Safety Mechanism)にフォールトが起きても直ちにVSG(Violation of a safety goal)とならないため、意図機能が動作している間に修理が可能であり、これをリペアラブルエレメントと言います。SMの故障率は$\lambda_\text{SM}$です。

定期検査修理スキームは以下のとおりです。2nd SMによるSMに対する定期検査が、周期$\tau$で行われます。 i番目の検査時刻は$\tau i, i=1,...,n$とするとき、最近の検査時刻を$τ_n$とすれば、$τ_n=nτ=\lfloor\frac{t}{\tau}\rfloor\tau$

定期検査により検出されたフォールトは全て、瞬時に修理されるものとします。ここで検査は確定的に実施されるため、区間$[(i-1)\tau, i\tau)$で生起した検出されるフォールトは全てiτにおいて修理されます。

SMのフォールト生起について、((0から$\tau_n$までの生起の有/無),($\tau_n$での検出の可/不可),($\tau_n$から$t$までの生起の有/無)) の8通りについて考え、$t$において不稼働の事象を洗い出してください。

なお、$\tau_n$での故障検出可とは、故障の有無を問わないものとします。一例として、故障が無いから検出できないとするのではなく、SMのうち検出可部分の故障が無いと読みます。この場合は故障の生起は無し、検出は有りとします。

ChatGPT: (中略)

指定されたシステムについて、フォールトの生起と検出に関連する8つの異なる事象を考えます。以下の条件を考慮して、不稼働の事象を洗い出します。

  1. $ 0 \leq t < \tau_n $: この区間では故障の検出は行われません。
  2. $ \tau_n \leq t < \tau_{n+1} $: この区間では故障が発生しても、次の検査時刻まで検出されません。

以下の8通りの事象を考えます。

  1. $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起なし
  2. $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起あり
  3. $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出可、$ (\tau_n,t) $での故障生起なし
  4. $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出可、$ (\tau_n,t) $での故障生起あり
  5. $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起なし
  6. $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起あり
  7. $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出可、$ (\tau_n,t) $での故障生起なし
  8. $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出可、$ (\tau_n,t) $での故障生起あり

したがって、不稼働の事象は以下の5つとなります。

  • 事象2: $ (0,\tau_n) $での故障が生起しないものの、$ (\tau_n,t) $で故障が生じ、そのまま不稼働となる。
  • 事象4: $ (0,\tau_n) $での故障が生起しないものの、$ (\tau_n,t) $で故障が生じる。この故障は$ \tau_n $で検出可能であったにも関わらず、次の検査まで検出されない。
  • 事象5: $ (0,\tau_n) $での故障が検出されず、$ \tau_n $での検出もなく、そのまま不稼働となる。
  • 事象6: $ (0,\tau_n) $での故障が検出されず、$ (\tau_n,t) $でさらに故障が生じ、不稼働となる。
  • 事象8: $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出可(瞬時に修理される)、$ (\tau_n,t) $での新たな故障生起あり(不稼働へ)

ご指摘いただいた内容を踏まえて、不稼働の事象は上記の5つとなります。再度ご確認いただけますでしょうか。

人間:

正解です。$t$においてSMが不稼働になる条件について、検出の可・不可にで大分類し、検出の可否とフォールトの生起区間の2つの事象の積にそれぞれ分解してください。 これはフォールトの生起と検出の可否が独立であるため可能です。 さらにフォールト生起区間を合成してください。合成とは、例えばフォールト生起区間$[t1, t2)$または$[t2, t3)$の事象を$[t1, t3)$とすることを意味します。

ChatGPT:

指定された条件に基づき、SMが不稼働になる条件を検出の可・不可によって大分類し、それぞれの事象を分解します。その後、フォールト生起区間を合成します。

検出不可の場合

検出不可の場合の不稼働事象は以下の3つでした。

  • 事象2: $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起あり
  • 事象5: $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起なし
  • 事象6: $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起あり
フォールト生起区間の合成
  • $ (0,\tau_n) $または$ (\tau_n,t) $の区間での故障生起

検出可の場合

検出可の場合の不稼働事象は以下の2つでした。

  • 事象4: $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出可、$ (\tau_n,t) $での故障生起あり
  • 事象8: $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出可(瞬時に修理)、$ (\tau_n,t) $での新たな故障生起あり
フォールト生起区間の合成
  • $ (\tau_n,t) $の区間での故障生起

結論

  • 検出不可の場合:フォールト生起区間が$ (0,\tau_n) $または$ (\tau_n,t) $であれば、SMが不稼働になる可能性がある。
  • 検出可の場合:フォールト生起区間が$ (\tau_n,t) $であれば、SMが不稼働になる可能性がある。

以上が、指定された条件に基づく不稼働の事象の分析です。

人間:

結論の時間区間を簡略化してください。

ChatGPT:

もちろんです。結論の時間区間を簡略化すると、以下のようになります。

  • 検出不可の場合:フォールト生起区間が $ (0,t) $ であれば、SMが不稼働になる可能性がある。
  • 検出可の場合:フォールト生起区間が $ (\tau_n,t) $ であれば、SMが不稼働になる可能性がある。

検出不可の場合では、検出が行われないため、全体の時間区間 $ (0,t) $ での故障生起が不稼働の条件となります。検出可の場合は、検出されれば修理されるため、$ \tau_n $ 以降の新たな故障生起が不稼働の条件となります。


うまく誘導した結果、正解の条件を導出しました。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (23)

posted by sakurai on August 30, 2023 #653

人間:

$t, u$で表現してください。

ChatGPT:

指摘いただき、ありがとうございます。以下に修正した数式を示します。

検出可能な故障と検出不可能な故障の合計不稼働度 $ Q_\text{SM}(t) $ は、$ u = t - \tau_n $ として以下のように表されます。

$$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(u) K + F_\text{SM}(t) (1 - K) $$

ここで、$ F_\text{SM}(u) $ は最後の検査以降の時間 $ u $ における不信頼度、$ F_\text{SM}(t) $ は全体の不信頼度を示します。また、$ K $ はフォールトの検出率を表しています。

定数を前置して、非検出の場合の項を前にしてください。

ご指摘いただき、ありがとうございます。指定通り、不稼働度 $ Q_\text{SM}(t) $ を再定義します。ここで、 $ u = t - \tau_n $ と置いています。

$$ Q_\text{SM}(t) = \img[-1.35em]{/images/withinseminar.png} $$

上記の式では、$ (1 - K) F_\text{SM}(t) $ 項が検出不可能な故障(検出されずに残る故障)を示し、$ K F_\text{SM}(u) $ 項が検出可能な故障(検出されて修理される故障)を示します。また、$ K $ はフォールトの検出率を表しています。


単純な計算ミス等が発生して少々もたつきましたが、正解を導き出しました。特に説明を求めていないにも関わらず、式の説明までしてくれるところが興味深いです。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (22)

posted by sakurai on August 29, 2023 #652

人間:

検出不可能な故障の説明が誤りです。いかなる検出周期でも検出できないのだから、$t$までに一度も修理がおきず、$t$における不稼働度は不信頼度に等しいわけです。

ChatGPT:

申し訳ありません、再度の間違いを訂正します。

検出不可能な故障:これはいかなる検査周期でも検出されない故障です。したがって、故障が発生した瞬間から、時刻 $ t $ まで一度も修理が行われず、その結果、不稼働度 $ Q_\text{SM}^{(2)}(t) $ はそのまま故障発生時から時刻 $ t $ までの不信頼度 $ F_\text{SM}(t) $ に等しくなります。

$$ Q_\text{SM}^{(2)}(t) = F_\text{SM}(t) $$

これを以前に計算した検出可能な故障についての不稼働度と合わせると、全体の不稼働度 $ Q_\text{SM}(t) $ は以下のようになります。

$$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t - \tau_n) K + F_\text{SM}(t) $$

これで、定期検査と修理を行うシステムにおける、時刻 $ t $ における不稼働度を表現したことになります。

$K$を見落としているようです。

おっしゃるとおり、私の最後の数式には$ K $が抜けていました。お詫び申し上げます。その修正は次のようになります。

検出可能な故障と検出不可能な故障の合計不稼働度 $ Q_\text{SM}(t) $ は以下のように表すことができます。

$$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t - \tau_n) K + F_\text{SM}(t) (1 - K) $$

この式で、$ K $はフォールト検出率を表しています。


かなり修正されて良くなってきました。あと一息です。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (21)

posted by sakurai on August 28, 2023 #651

人間:

検出不可能な故障についての説明が誤りです。任意の時点でフォールトが起きたら時刻$t$まで検出不可能なので、そのように修正してください。

ChatGPT:

申し訳ありません、検出不可能な故障についての説明が不正確でした。以下に訂正した説明を提供します。

  1. 検出可能な故障:
    これは最後の検査時間$ \tau_n $以降に起きたフォールトで、次の検査までに検出されると考えられます。したがって、$ t $における不稼働度$ Q_\text{SM}^{(1)}(t) $は、最後の検査以降に発生したフォールトの不信頼度$ F_\text{SM}(t - \tau_n) $と、フォールトが検出される確率$ K $の積として表されます。 $$ Q_\text{SM}^{(1)}(t) = F_\text{SM}(t - \tau_n) K $$

  2. 検出不可能な故障:
    これは最後の検査時間$ \tau_n $より前に起き、次の検査までに検出されないと考えられるフォールトです。したがって、$ t $における不稼働度$ Q_\text{SM}^{(2)}(t) $は、最後の検査以前に発生したフォールトの不信頼度$ F_\text{SM}(\tau_n) $と、フォールトが検出されない確率$ 1 - K $の積として表されます。 $$ Q_\text{SM}^{(2)}(t) = F_\text{SM}(\tau_n) (1 - K) $$ ここで、$ \tau_n = \lfloor \frac{t}{\tau} \rfloor \tau $であり、$ u = t - \tau_n $としました。以上の2つの不稼働度を合計すると、全体の不稼働度$ Q_\text{SM}(t) $を得ます。 $$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t - \tau_n) K + F_\text{SM}(\tau_n) (1 - K) $$


検出可能な場合の説明は合っています。ところが検出不可能な場合の説明が、最後の検査を問題にしている点で誤っています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (20)

posted by sakurai on August 25, 2023 #649

人間:

説明が矛盾しています。両方のケースで$1-K$を用いています。また、検出不可能なケースで$t-\tau_n$と誤って用いています。さらに検出可能なケースで$F_\text{SM}(t)$としています。

ChatGPT:

おっしゃる通り、私の説明は間違いが含まれております。ここでの重要な点は、検出可能な故障と検出不可能な故障について別々に考える必要があるということです。

検出可能な故障について考えると、これは最後の検査$ \tau_n $以降に発生し、次の検査時間までに検出されると考えられます。したがって、不稼働度$ Q_\text{SM}^{(1)}(t) $は、最後の検査以降に発生したフォールトの不信頼度$ F_\text{SM}(t - \tau_n) $とフォールトが検出される確率$ K $の積として表されます。

$$ Q_\text{SM}^{(1)}(t) = F_\text{SM}(t - \tau_n) K $$

一方、検出不可能な故障について考えると、これは最後の検査$ \tau_n $以前に発生し、次の検査時間までに検出されないと考えられます。したがって、不稼働度$ Q_\text{SM}^{(2)}(t) $は、最後の検査以前に発生したフォールトの不信頼度$ F_\text{SM}(u) $とフォールトが検出されない確率$ 1 - K $の積として表されます。

$$ Q_\text{SM}^{(2)}(t) = F_\text{SM}(u) (1 - K) $$

ここで、$ u = t - \tau_n $と置いています。これらを合計すると、全体の不稼働度$ Q_\text{SM}(t) $を得ることができます。

$$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t - \tau_n) K + F_\text{SM}(u) (1 - K) $$


検出可能の場合の説明は合っています。ところが、検出不可能の場合の説明が誤っています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (19)

posted by sakurai on August 24, 2023 #648

前回は、稼働度の一般方程式 $$ A(t) = R(t) + \int_{0}^{t} m(x) \cdot R(t - x) dx $$ を定期修理の場合に特殊化することにより、数式変形を用いて不稼働度$Q(t)$を導出させましたが、今回は過去記事のように、不稼働度をフォールトの検出・非検出に分けて考えさせ、$Q(t)$を導出させます。

例によってChatGPTは毎回回答が変わるので、よりましな回答をした場合について記載します。まず、以下にChatGPTに対する質問を記載します。


人間:

ISO 26262の範囲では故障率$\lambda$は一定値をとるため、フォールトの分布は指数分布となります。

一般にはSM (Safety Mechanism)にフォールトが起きても直ちにVSG(Violation of a safety goal)とならないため、意図機能が動作している間に修理が可能であり、これをリペアラブルエレメントと言います。SMの故障率は$\lambda_\text{SM}$です。

定期検査修理スキームは以下のとおりです。2nd SMによるSMに対する定期検査が、周期$\tau$で行われます。 $i$番目の検査時刻は$i\tau,\ \ i=1,...,n$とするとき、最近の検査時刻を$\tau_n$とすれば、$\tau_n=n\tau=\lfloor\frac{t}{\tau}\rfloor \tau$と表されます。定期検査により検出された(フォールト検出率を$K$, 一定値)フォールトは全て、瞬時に修理されるものとします。

SMのフォールトについて、(1)検出可能、(2)検出不可能の2つに分けて考え、それぞれの、tにおける不稼働度$Q_\text{SM}(t)$を、SMの不信頼度$F_\text{SM}(t)$を用いて表現してください。$u\equiv t-\tau_n$として$\tau$及び$\tau_n$を消去したうえで$t, u$で表現してください。exponential表現は使用しないこと。

ChatGPT:

まず、故障が$ t $で発生し、それが検出可能かどうかを分けて考えてみましょう。

  1. 検出可能なフォールト:
    これは、最後の検査$ \tau_n $以降に発生したものです。$ t $における不稼働度は、発生してから次の検査までの間故障が検出されない確率を考えればよく、これは、$ K $の補数である$ 1-K $を用いて表すことができます。したがって、$ t $における不稼働度$ Q_\text{SM}^{(1)}(t) $は次のようになります。 $$ Q_\text{SM}^{(1)}(t) = F_\text{SM}(t) (1 - K) $$

  2. 検出不可能なフォールト:
    これは、最後の検査$ \tau_n $より前に発生したものです。$ t $における不稼働度は、発生してから最後の検査までの間故障が検出されない確率を考えればよく、これは、$ K $の補数である$ 1-K $を用いて表すことができます。したがって、$ t $における不稼働度$ Q_\text{SM}^{(2)}(t) $は次のようになります。 $$ Q_\text{SM}^{(2)}(t) = F_\text{SM}(t- \tau_n) (1 - K) $$ ここで、$ u = t - \tau_n $とすると、以上の2つの不稼働度をまとめて表現することができます。 $$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t) (1 - K) + F_\text{SM}(u) (1 - K) $$ これが、定期検査と修理を行うシステムにおける、$ t $における不稼働度を表現したものとなります。


考え方の方向は良いのですが、細部でいろいろ問題がありそうです。まず検出可・不可について両者ともに$1-K$を誤って用いています。さらに、検出可の場合は最後に検出された後からのフォールトのみを考えれば良いのですが、その点について検出不可の場合と混乱しているようです。


左矢前のブログ 次のブログ右矢


ページ: