Article #973

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

Pongと強化学習 (98)

posted by sakurai on May 15, 2025 #973

以下のコードの説明をお願いします。

    q_network = QNetwork(envs).to(device)
    optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate)
    target_network = QNetwork(envs).to(device)
    target_network.load_state_dict(q_network.state_dict())

このコードは、Deep Q-Network (DQN) の実装の一部であり、以下の各ステップで特定の機能を実行しています。DQNは強化学習において、エージェントが最適な行動を学習するための一手法であり、ニューラルネットワークを用いて行動価値関数(Q値)を近似します。

1. Qネットワークの初期化:
        q_network = QNetwork(envs).to(device)

この行では、環境envsに基づいたQ値を推定するためのニューラルネットワーク(QNetworkクラスのインスタンス)を作成し、計算を行うデバイス(CPUまたはGPU)にモデルを移動しています。to(device)は、モデルを指定されたデバイス(例えばGPU)に配置し、計算の効率を向上させるために使用されます。

2. オプティマイザの設定:
        optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate)

ここでは、作成したQネットワークのパラメータを最適化するために、Adamオプティマイザを設定しています。lr=args.learning_rateは学習率を指定しており、これによりネットワークの学習プロセスの速度や収束の具合が調整されます。

3. ターゲットネットワークの初期化:
        target_network = QNetwork(envs).to(device)

DQNでは、学習の安定化のためにターゲットネットワークを使用します。この行では、元のQネットワークと同じ構造の新しいネットワークを作成し、同じデバイスに配置しています。ターゲットネットワークは、学習中に定期的にQネットワークから重みをコピーすることで更新されますが、その更新はQネットワークよりも頻繁ではありません。

4. ターゲットネットワークへの重みのコピー:
        target_network.load_state_dict(q_network.state_dict())

この行で、ターゲットネットワークに対してQネットワークの重みをコピーしています。これにより、両方のネットワークが学習開始時点で同じパラメータを持つことになります。ターゲットネットワークの重みは、一定の間隔でQネットワークから更新され、学習中の価値推定の安定性を保ちます。

これらのステップは、DQNの学習プロセスの基盤を構築しており、エージェントが与えられた環境内で最適なポリシーを効率的に学習するための準備を整えています。


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax. If you include an ad such as http://, it will be invalidated by our AI system.

Please enter the numbers as they are shown in the image above.