Article #200

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

確率論(22)

posted by sakurai on February 10, 2020 #200

2項過程

時間間隔$[0, t]$において、$k$個の故障が起きる確率を考えます。まず離散時間の場合、単一の部品の故障確率を$p$、故障個数を表す確率変数を$X$とすれば、 $$\Pr\{X=k\}={}_n\mathrm{C}_k(1-p)^{n-k}p^k\ \ \ \ \ \ \ \text{for }k=1,2,...,n$$ 前回と同様に、単一の部品の故障率を$\lambda$、時間間隔$[0, t]$を$n$等分した一つの時間間隔を$\Delta t$とすれば、 $$p=\lambda\Delta t=\lambda\frac{t}{n}$$ よって、 $$\Pr\{X=k\}=\frac{n!}{(n-k)!k!}\left(1-\frac{\lambda t}{n}\right)^{n-k}\left(\frac{\lambda t}{n}\right)^k\ \ \ \ \ \ \ \text{for }k=1,2,...,n$$ 確率変数$X$は2項分布し、この確率変数は時間によって変化するため、$X(\omega)$と時刻$t$の直積をとった確率変数$X(\omega, t)$の集合$\{X(\omega, t)\}$を2項過程といいます。

ポアソン過程

前式において、$n\to\infty$の極限を取れば、 $$\Pr\{X=k\}=\lim_{n\to\infty}{}_n\mathrm{C}_k(1-p)^{n-k}p^k$$

$$=\lim_{n\to\infty}\frac{n!}{(n-k)!k!}\left(1-\frac{\lambda t}{n}\right)^{n-k}\left(\frac{\lambda t}{n}\right)^k$$

$$=\lim_{n\to\infty}\frac{n(n-1)...(n-k+1)}{n^k}\cdot\frac{1}{k!}\left(1-\frac{\lambda t}{n}\right)^{n-k}\left(\lambda t\right)^k\\ =\frac{(\lambda t)^k}{k!}e^{-\lambda t}$$ これをポアソン過程と呼びます。部品の故障は連続時間中に起こり、その確率は低いので、ポアソン過程として取り扱うことができます。


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax. If you include an ad such as http://, it will be invalidated by our AI system.

Please enter the numbers as they are shown in the image above.