Posts Tagged with "PMHF"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

規格第2版のPMHF式の疑問(11)

posted by sakurai on May 12, 2022 #475

パターン2

続いてパターン2です。弊社のやり方はCTMCの原理を用い、時刻$t$におけるDPF確率密度を求め、$0$から$T_\text{lifetime}$まで積分するというものです。

  • Pattern 2: SM1⇒IFの順にフォールトが発生し、SM1のフォールトは、SM2によって緩和され通知される。フォールトの暴露時間は、運転手が修理のために車両を持ち込むのに必要な予想される時間。

これはSM1のフォールトが2nd SMの定期周期$T_\text{service}$により検査され、検出割合は$K_\text{SM,DPF}$でありその全量が修理されるパターンです。時刻$t$までに最初のSM1のフォールトが起き、それ以降$t'(>=t)$がVSGとなる2つ目のIFのフォールトが起きた時刻とします。

図%%.1
図475.1 2nd editionパターン2マルコフ図

同様に、IFのフォールトに関する$t$から$t+\delta t$までのDPF確率密度を求めます。次にサブシステムについて、DPF VSGとなる確率密度を0から$T_\text{lifetime}$まで積分します。

まず、検出される部分のSM1は周期的に修理されるため、SM1の$LAT2$での状態確率は、$u\equiv t\bmod T_\text{service}$とすれば、 $$ \Pr\{\text{SM1(det) in }LAT2\}=\Pr\{\text{SM1 down at }u\cap\text{SM1 detected}\}\\ =K_\text{SM,DPF}F_\text{SM}(u) \tag{475.1} $$

次にIFの$LAT2$での状態確率は、 $$ \Pr\{\text{IF in }LAT2\}=\Pr\{\text{IF up at }t\cap\text{IF prevented}\}\\ =\Pr\{\text{IF up at }t\}\Pr\{\text{IF prevented}\} =K_\text{IF,DPF}R_\text{IF}(t) \tag{475.2} $$

$LAT2$から$DPF1$への微小時間間隔$\delta t$での遷移確率は、IFがフォールトによりDPFとなる場合であり、 $$ d\!\Pr\{\text{IF down in }(t, t+\delta t] | \text{IF up at }t\}=\lambda_\text{IF}\delta t \tag{475.3} $$ 従って、状態確率(475.2)と遷移確率(475.3)の積をとりIFの$(t,t+\delta t]$における確率密度を求めれば、 $$ d\!\Pr\{\text{IF in }LAT2\text{ at }t\cap\text{IF fails in }(t, t+\delta t]\}\\ =d\!\Pr\{\text{IF up at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\Pr\{\text{IF up at }t\}\Pr\{\text{IF prevented}\}d\!\Pr\{\text{IF down in }(t, t+\delta t] | \text{IF up at }t\}\\ =K_\text{IF,DPF}R_\text{IF}(t)\lambda_\text{IF}\delta t=K_\text{IF,DPF}f_\text{IF}(t)\delta t \tag{475.4} $$

IFとSM1にはフォールトの生起について独立であるため、各々の確率はかけることができます。よって、 IFの項(475.4)とSM1の項(475.1)の積をとり、$0$から$T_\text{lifetime}$まで積分して時間平均をとると、 $$ M_\text{PMHF,P2}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}d\!\Pr\{\text{LAT2 at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}d\!\Pr\{\text{IF up at }t\cap\text{SM1 down at }u\cap\text{SM1 detected}\\ \cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\text{SM1 down at }u\cap\text{SM1 detected}\}\\ \cdot d\!\Pr\{\text{IF up at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}K_\text{SM,DPF}F_\text{SM}(u)K_\text{IF,DPF}f_\text{IF}(t)dt\\ \approx\frac{1}{2}K_\text{IF,DPF}K_\text{SM,DPF}\lambda_\text{IF}\lambda_\text{SM}T_\text{service}\\ =\frac{1}{2}\lambda_\text{SM,DPF,det}\lambda_\text{IF,DPF}T_\text{service} \tag{475.5} $$ なお、式変形中に弊社積分公式を使用しています。

これは図104.2の初版PMHF式(パターン1, 2のみ)の、DPFにおけるパターン2に相当する部分と(IF⇒m, $\tau_\text{SM}$⇒$T_\text{service}$と読み替えることにより)正確に一致します。

図%%.1
図475.2 1st edition規格第1式

規格第2版の式は、このパターン2がおかしく、SM1の周期的修理性を考慮に入れていません。2番目のIFのフォールトの露出時間こそ、$t$から$t+T_\text{service}$となっているものの、SM1が0から$t$までの期間において最初のフォールトとなり、SM1が周期的に修理される効果が入っていないため、結果式は誤っています。


左矢前のブログ 次のブログ右矢

規格第2版のPMHF式の疑問(10)

posted by sakurai on May 6, 2022 #474

「ISO 26262第2版解説書」(日本規格協会)のPMHF式と別の方法ですが、弊社の方法で計算し直します。弊社のやり方はCTMCの原理を用い、時刻$t$におけるDPF確率密度を求め、$0$から$T_\text{lifetime}$まで積分するというものです。

パターン1

  • Pattern 1: SM1⇒IFの順にフォールトが発生し、SM1のフォールトはSM2によって緩和されるが通知されない、または緩和されない。フォールトの暴露時間は、最悪の場合の暴露時間である車両寿命となる。

パターン1は、SM1のフォールトが2nd SM(SM2)で検出されないため、SM1のフォールト全体に対するパターン1の割合は$1-K_\text{SM,DPF}$となり、マルコフ図は以下のようになります。時刻パラメータ$t$までに最初のSMのフォールトが起き、$t'(\approx t)$がVSGとなる2つ目のIFのフォールトが起きた時刻とします。

図%%.1
図474.1 2nd editionパターン1マルコフ図

PMHFの求め方は、IFのフォールトに関する$t$から$t+\delta t$までのDPF確率密度を求めます。次にサブシステムについて、DPF VSGとなる確率密度を0から$T_\text{lifetime}$まで積分します。

まず、検出されない部分のSM1の$LAT2$での状態確率は、 $$ \Pr\{\text{SM1(undet) in }LAT2\}=\Pr\{\text{SM1 down at }t\cap\text{SM1 not detected}\}\\ =(1-K_\text{SM,DPF})F_\text{SM}(t) \tag{474.1} $$ 次にIFの$LAT2$での状態確率は、 $$ \Pr\{\text{IF in }LAT2\}=\Pr\{\text{IF up at }t\cap\text{IF prevented}\}\\ =\Pr\{\text{IF up at }t\}\Pr\{\text{IF prevented}\} =K_\text{IF,DPF}R_\text{IF}(t) \tag{474.2} $$

$LAT2$から$DPF1$への微小時間間隔$\delta t$での遷移確率は、IFがフォールトによりDPFとなる場合であり、

$$ d\!\Pr\{\text{IF down in }(t, t+\delta t] | \text{IF up at }t\}=\lambda_\text{IF}\delta t \tag{474.3} $$

従って、状態確率(474.2)と遷移確率(474.3)の積をとりIFの$(t, t+\delta t]$における確率密度を求めれば、 $$ d\!\Pr\{\text{IF in }LAT2\text{ at }t\cap\text{IF fails in }(t, t+\delta t]\}\\ =d\!\Pr\{\text{IF up at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\Pr\{\text{IF up at }t\}\Pr\{\text{IF prevented}\}d\!\Pr\{\text{IF down in }(t, t+\delta t] | \text{IF up at }t\}\\ =K_\text{IF,DPF}R_\text{IF}(t)\lambda_\text{IF}\delta t=K_\text{IF,DPF}f_\text{IF}(t)\delta t \tag{474.4} $$

IFとSM1にはフォールトの生起について独立であるため、各々の確率はかけることができます。よって、 IFの項(474.4)とSM1の項(474.1)の積をとり、$0$から$T_\text{lifetime}$まで積分して時間平均をとると、 $$ M_\text{PMHF,P1}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}d\!\Pr\{\text{LAT2 at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}d\!\Pr\{\text{IF up at }t\cap\text{SM1 down at }t\cap\text{SM1 not detected}\\ \cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\text{SM1 down at }t\cap\text{SM1 not detected}\}\\ \cdot d\!\Pr\{\text{IF up at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}(1-K_\text{SM,DPF})F_\text{SM}(t)K_\text{IF,DPF}f_\text{IF}(t)dt\\ \approx\frac{1}{2}K_\text{IF,DPF}(1-K_\text{SM,DPF})\lambda_\text{IF}\lambda_\text{SM}T_\text{lifetime}\\ =\frac{1}{2}\lambda_\text{SM,DPF,lat}\lambda_\text{IF,DPF}T_\text{lifetime} \tag{474.5} $$ なお、式変形中に弊社積分公式を使用しています。

これは図104.2の初版PMHF式(パターン1, 2のみ)の、DPFにおけるパターン1に相当する部分と(IF⇒mと読み替えることにより)正確に一致します。

図%%.1
図474.1 1st edition規格第1式

このようにCTMCを用いて、時刻$t$におけるDPF確率密度を0から車両寿命まで積分する方法のほうが、ずっと簡単でわかりやすいです。


左矢前のブログ 次のブログ右矢

規格第2版のPMHF式の疑問(9)

posted by sakurai on April 14, 2022 #473

パターン3, 4

パターン3, 4は計算をするまでもなく、IFとSMの修理性を逆にすれば結果は明らかで、パターン3は1から、パターン4は2から求められます。ただし、パターン1と異なり、パターン3にはSM1によって緩和されない場合は含まないと書かれています。言うまでも無く、IFのフォールトがSM1によって緩和されない場合はRFとなり、DPFとならないためです。

  • Pattern 3: IF⇒SM1の順にフォールトが発生し、IFのフォールトはSM1によって緩和されるが通知されない。フォールトの暴露時間は、最悪の場合の暴露時間である車両寿命となる。
  • Pattern 4: IF⇒SM1の順にフォールトが発生し、IFのフォールトは、SM1によって緩和され通知される。フォールトの暴露時間は、運転手が修理のために車両を持ち込むのに必要な予想される時間。

パターン3及び4の、計算結果式のみを以下に示します。 $$ M_\text{PMHF,P3} =\frac{1}{2}\lambda_\text{IF,DPF,lat}\lambda_\text{SM,DPF}T_\text{lifetime} \tag{473.1} $$ $$ M_\text{PMHF,P4} =\frac{1}{2}\lambda_\text{IF,DPF,det}\lambda_\text{SM,DPF}T_\text{service} \tag{473.2} $$

結論

弊社での計算結果、規格第2版PMHF式はパターン1, 3は結果は正しく(修理性の前提は誤っていますが)、パターン2, 4は前提も結果も誤っていることが確認できました。 図473.1に2nd editionの式を示します。

図%%.1
図473.1 2nd Edition PMHF式

まとめとして以下にパターン1~4として(470.2), (472.2), (473.1), (473.2)の総和を示します。 $$ \begin{eqnarray} M_\text{PMHF,DPF} &=&\frac{1}{2}\lambda_\text{SM,DPF,lat}\lambda_\text{IF,DPF}T_\text{lifetime}\qquad\qquad\text{Pattern 1}\\ &+&\frac{1}{2}\lambda_\text{SM,DPF,det}\lambda_\text{IF,DPF}T_\text{service}\qquad\qquad\text{Pattern 2}\\ &+&\frac{1}{2}\lambda_\text{IF,DPF,lat}\lambda_\text{SM,DPF}T_\text{lifetime}\qquad\qquad\text{Pattern 3}\\ &+&\frac{1}{2}\lambda_\text{IF,DPF,det}\lambda_\text{SM,DPF}T_\text{service}\qquad\qquad\text{Pattern 4} \end{eqnarray} \tag{473.3} $$

ただし、両方ともIFまたはSMの片方が非修理系という誤った(?)前提に立っている式となります。本来の2nd editionの式は、IFもSMも修理系であると考えます。


左矢前のブログ 次のブログ右矢

規格第2版のPMHF式の疑問(8)

posted by sakurai on April 12, 2022 #472

パターン2

続いてパターン2です。前稿の続きです。

  • Pattern 2: SM1⇒IFの順にフォールトが発生し、SM1のフォールトは、SM2によって緩和され通知される。フォールトの暴露時間は、運転手が修理のために車両を持ち込むのに必要な予想される時間。

これはSM1のフォールトが2nd SMの定期周期$T_\text{service}$により検査され、検出割合は$K_\text{SM,DPF}$でありその全量が修理されるパターンです。時刻パラメータ$t$が最初のSMのフォールトが起きた時刻、$t'$がVSGとなる2つ目のIFのフォールトが起きた時刻とします。

図%%.1
図472.1 2nd editionパターン2マルコフ図

まずIFについては前稿と同様です。IFの$LAT2$での状態確率は、 $$ \Pr\{\text{IF in }LAT2\}=\Pr\{\text{IF up at }t\cap\text{VSG of IF prevented}\}=K_\text{IF,DPF}R_\text{IF}(t) \tag{472.1} $$ $LAT2$から$DPF1$への微小時間での遷移確率は、IFがDPFする場合であり、 $$ d\!\Pr\{\text{IF down in }(t, t+dt] | \text{IF up at }t\cap\text{VSG of IF prevented}\}=\lambda_\text{IF}dt \tag{472.2} $$

規格のとおりIFの確率を求めるとIFは時刻$0$から$t$まではフォールトせず、かつ、IFに関する$t'$の時のDPF確率密度を$t$から$t+T_\text{service}$まで積分し、$t$で表します。$t$から$t+T_\text{service}$までの理由は、必ず$T_\text{service}$間に検査・修理が入るので、露出時間の最大は上記のとおり、$T_\text{service}$となるためです。

実はここに誤りがあり、期間を$t$から$t+T_\text{service}$とすると、SM1⇒IFの順のフォールトだけでなく、その逆順のフォールトも含まれます。

その理由は、パターン2は検出可能部分のSM1のフォールトなので、期間間隔$T_\text{service}$内にDPF、すなわち1つめのSM1のフォールトと2つめのIFのフォールトが両方共起きる必要があります。図472.1の$OPR$から$LAT2$、さらに$LAT2$から$DPF$までを1回の間隔$T_\text{service}$内で遷移する必要があります。

また、その順序もSM1⇒IFと決まっています。SM1のフォールトが起きた時のIFのフォールト生起確率という条件付き確率であれば良いのですが、そうではなくIFとSM1のフォールト確率は独立とするならば、期間間隔$T_\text{service}$を考えるとSM1⇒IFだけでなくIF⇒SM1も含まれてしまいます。従って、半分の期間間隔$\frac{1}{2}T_\text{service}$を考えるか、または期間間隔$T_\text{service}$での確率を求めて0.5をかけるのが正解です。従って後者をとれば、 $$ \Pr\{\text{IF fails last in }[t, t+T_\text{service}])=\frac{1}{2}\Pr\{\text{IF down in }[t, t+T_\text{service}]) $$

従って、(472.1)、(472.2)から、 $$ \Pr\{(\text{IF not fail in }[0, t)\cap\text{VSG of IF prevented})\cap (\text{IF fails last in }[t, t+T_\text{service}])\}\\ =\Pr\{(\text{IF up at }t\cap\text{VSG of IF prevented})\cap (\text{IF fails last in }[t, t+T_\text{service}])\}\\ =K_\text{IF,DPF}\Pr\{\text{IF fails last in }[t, t+T_\text{service}]\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{t+T_\text{service}}d\!\Pr\{\text{IF up at }t'\cap\text{IF down in }[t', t'+dt')\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{t+T_\text{service}}\Pr\{\text{IF up at }t'\}d\!\Pr\{\text{IF down in }[t', t'+dt')\ |\ \text{IF up at }t'\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{t+T_\text{service}}R_\text{IF}(t')\lambda_\text{IF}dt'=K_\text{IF,DPF}\int_t^{t+T_\text{service}}f_\text{IF}(t')dt'\\ =\frac{1}{2}K_\text{IF,DPF}\left[F_\text{IF}(t')\right]^{t+T_\text{service}}_t=K_\text{IF,DPF}\left[F_\text{IF}(t+T_\text{service})-F_\text{IF}(t)\right]\\ =\frac{1}{2}K_\text{IF,DPF}F_\text{IF}(T_\text{service})\approx\frac{1}{2}K_\text{IF,DPF}\lambda_\text{IF}T_\text{service} \tag{472.3} $$ ここで、IFはunrepairableであり、時刻$t$で最初のフォールトが起きるため、$F_\text{IF}(t)=0$を用いています。

次に、SMの$OPR$での状態確率は、$u\equiv t\bmod T_\text{service}$とすれば、 $$ \Pr\{\text{SM in }OPR\}=\Pr\{\text{SM is up at }u\}=R_\text{SM}(u) \tag{472.4} $$

$OPR$から$LAT2$への微小時間での遷移確率は、SMがフォールトする場合であり、 $$ d\!\Pr\{\text{SM down in }(u, u+du] | \text{SM is up at }u\}=K_\text{SM,DPF}\lambda_\text{SM}du \tag{472.5} $$

次にIFとSMのフォールトは独立事象であるため、IFの確率とSMの確率の積をDPF確率として、$0$から$T_\text{lifetime}$まで積分するがSMの確率は周期$T_\text{service}$でゼロとなるため、$T_\text{lifetime}$中には$n\equiv\frac{T_\text{lifetime}}{T_\text{service}}$回存在します。従って(472.3)~(472.5)を用いて、 $$ \require{cancel} M_\text{PMHF,P2}=\frac{1}{\bcancel{T_\text{lifetime}}}\frac{\bcancel{T_\text{lifetime}}}{\bcancel{T_\text{service}}}\int_0^{T_\text{service}}K_\text{SM,DPF}R_\text{SM}(u)\lambda_\text{SM}\frac{1}{2}K_\text{IF,DPF}\lambda_\text{IF}\bcancel{T_\text{service}}du\\ =\frac{1}{2}K_\text{SM,DPF}K_\text{IF,DPF}\lambda_\text{IF}\int_0^{T_\text{service}}f_\text{SM}(u)du\\ \approx\frac{1}{2}K_\text{IF,DPF}K_\text{SM,DPF}\lambda_\text{IF}\lambda_\text{SM}T_\text{service}=\frac{1}{2}\lambda_\text{SM,DPF,det}\lambda_\text{IF,DPF}T_\text{service} \tag{472.6} $$

これは図104.2の初版PMHF式(パターン1, 2のみ)の、DPFにおけるパターン2に相当する部分と(IF⇒m, $\tau_\text{SM}$⇒$T_\text{service}$と読み替えることにより)正確に一致します。

図%%.1
図472.2 1st edition規格第1式


左矢前のブログ 次のブログ右矢

posted by sakurai on April 11, 2022 #471

前稿において、規格第2版のやり方に従ってPMHF計算をすると、新たに以下の2つの公式が必要になるので、公式の導出を示します。近似のポリシーは$\lambda$の2乗までを残すものとします。

No.1

$$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}f_\text{SM}(t)f_\text{IF}(t)dt=\lambda_\text{SM}\lambda_\text{IF} \tag{471.1} $$ (471.1)に$f_\text{SM}(t)=\lambda_\text{SM}e^{-\lambda_\text{SM}t}$及び、$f_\text{IF}(t)=\lambda_\text{IF}e^{-\lambda_\text{IF}t}$を用いて、 $$ \require{cancel} \text{L.H.S of }(471.1)=\frac{\lambda_\text{SM}\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-(\lambda_\text{SM}+\lambda_\text{IF})t}dt=\frac{\lambda_\text{SM}\lambda_\text{IF}}{T_\text{lifetime}}\left[\frac{1}{\lambda_\text{IF}+\lambda_\text{SM}}e^{-(\lambda_\text{IF}+\lambda_\text{SM})t}\right]^0_{T_\text{lifetime}}\\ =\frac{\lambda_\text{SM}\lambda_\text{IF}}{T_\text{lifetime}(\lambda_\text{IF}+\lambda_\text{SM})}\left(1-e^{-(\lambda_\text{IF}+\lambda_\text{SM})T_\text{lifetime}}\right)\approx\frac{\lambda_\text{SM}\lambda_\text{IF}}{\bcancel{T_\text{lifetime}}\bcancel{(\lambda_\text{IF}+\lambda_\text{SM})}}\bcancel{(\lambda_\text{IF}+\lambda_\text{SM})}\bcancel{T_\text{lifetime}} $$

No.2

$$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}f_\text{SM}(t)R_\text{IF}(t)F_\text{IF}(t)dt=\frac{1}{2}\lambda_\text{SM}\lambda_\text{IF}T_\text{lifetime} \tag{471.2} $$ 同様に、 $$ \text{L.H.S of }(471.2)=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\lambda_\text{SM}e^{-\lambda_\text{SM}t}e^{-\lambda_\text{IF}t}(1-e^{-\lambda_\text{IF}t})dt\\ =\frac{\lambda_\text{SM}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-(\lambda_\text{SM}+\lambda_\text{IF})t}dt-\frac{\lambda_\text{SM}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-(\lambda_\text{SM}+2\lambda_\text{IF})t}dt\\ =\frac{\lambda_\text{SM}}{T_\text{lifetime}}\left[\frac{e^{-(\lambda_\text{SM}+\lambda_\text{IF})t}}{\lambda_\text{SM}+\lambda_\text{IF}}\right]^0_{T_\text{lifetime}}-\frac{\lambda_\text{SM}}{T_\text{lifetime}}\left[\frac{e^{-(\lambda_\text{SM}+2\lambda_\text{IF})t}}{\lambda_\text{SM}+2\lambda_\text{IF}}\right]^0_{T_\text{lifetime}}\\ =\frac{\lambda_\text{SM}}{T_\text{lifetime}(\lambda_\text{SM}+\lambda_\text{IF})}\left(1-e^{-(\lambda_\text{SM}+\lambda_\text{IF})T_\text{lifetime}}\right)-\frac{\lambda_\text{SM}}{T_\text{lifetime}(\lambda_\text{SM}+2\lambda_\text{IF})}\left(1-e^{-(\lambda_\text{SM}+2\lambda_\text{IF})T_\text{lifetime}}\right)\\ \approx\frac{\lambda_\text{SM}}{\bcancel{T_\text{lifetime}}\bcancel{(\lambda_\text{SM}+\lambda_\text{IF})}}\left(\bcancel{(\lambda_\text{SM}+\lambda_\text{IF})}\bcancel{T_\text{lifetime}}-\frac{1}{2}(\lambda_\text{SM}+\lambda_\text{IF})^\bcancel{2} T_\text{lifetime}^\bcancel{2}\right)\\ -\frac{\lambda_\text{SM}}{\bcancel{T_\text{lifetime}}\bcancel{(\lambda_\text{SM}+2\lambda_\text{IF})}}\left(\bcancel{(\lambda_\text{SM}+2\lambda_\text{IF})}\bcancel{T_\text{lifetime}}-\frac{1}{2}(\lambda_\text{SM}+2\lambda_\text{IF})^\bcancel{2} T_\text{lifetime}^\bcancel{2}\right)\\ =\lambda_\text{SM}\left(\bcancel{1}-\frac{1}{2}(\bcancel{\lambda_\text{SM}}+\bcancel{\lambda_\text{IF}})T_\text{lifetime}-\bcancel{1}+\frac{1}{2}(\bcancel{\lambda_\text{SM}}+\bcancel{2}\lambda_\text{IF})T_\text{lifetime}\right)=\frac{1}{2}\lambda_\text{IF}\lambda_\text{SM}T_\text{lifetime} $$ No.1, 2から、以下のような簡便公式が得られます。

$$ \int_0^{T_\text{lifetime}}f(t)dt\approx\lambda\int_0^{T_\text{lifetime}}dt,\ \ \int_0^{T_\text{lifetime}}R(t)dt\approx\int_0^{T_\text{lifetime}}dt $$


左矢前のブログ 次のブログ右矢

規格第2版のPMHF式の疑問(7)

posted by sakurai on April 9, 2022 #470

「ISO 26262第2版解説書」(日本規格協会)のPMHF式の解読を行います。この記事の続きです。

パターン1

パターン1を規格に従って計算します。

  • Pattern 1: SM1⇒IFの順にフォールトが発生し、SM1のフォールトはSM2によって緩和されるが通知されない、または緩和されない。フォールトの暴露時間は、最悪の場合の暴露時間である車両寿命となる。

規格にはマルコフ図が記載されていないので推測すると、パターン1は、SM1のフォールトが2nd SM(SM2)で検出されないため、SM1のフォールト全体に対するパターン1の割合は$1-K_\text{SM,DPF}$となり、マルコフ図は以下のようになります。時刻パラメータ$t$が最初のSMのフォールトが起きた時刻、$t'$がVSGとなる2つ目のIFのフォールトが起きた時刻とします。

図%%.1
図470.1 2nd editionパターン1マルコフ図

ただし、規格によるPMHFの求め方はマルコフ連鎖は単純には使用していないようです。

規格によるPMHFの求め方は、後に起きるIFのフォールトに関する$t'$の時の確率密度を$t$から$T_\text{lifetime}$まで積分し$t$で表します。$t$まではIFはフォールトしない場合です。次に$t$について、先に起きるSMのフォールトが、DPF VSGとなる確率密度を0から$T_\text{lifetime}$まで積分します。

通常の求め方は、先に起きるフォールトによる状態確率×後に起きるフォールトによる遷移確率を無限に足し合わせたものとなります。規格では逆に、後に起きるフォールトによる状態確率×先に起きるフォールトによる遷移確率を無限に足し合わせたものとしていますが、これが正しいかどうかは判断つきません。

まず、IFの$LAT2$での状態確率は、 $$ \Pr\{\text{IF in }LAT2\}=\Pr\{\text{IF up at }t\cap\text{VSG of IF prevented}\}=K_\text{IF,DPF}R_\text{IF}(t) \tag{470.1} $$ $LAT2$から$DPF1$への微小時間での遷移確率は、IFがDPFする場合であり、 $$ d\!\Pr\{\text{IF down in }(t, t+dt] | \text{IF up at }t\cap\text{VSG of IF prevented}\}=\lambda_\text{IF}dt \tag{470.2} $$

規格のとおりIFの確率を求めるには、IFは時刻$0$から$t$まではDPFフォールトせず、かつ、$t$から$T_\text{lifetime}$までにDPFフォールトする確率となります。

従って、(470.1)、(470.2)から、 $$ \Pr\{(\text{IF not fail in }[0, t)\cap\text{VSG of IF prevented})\cap (\text{IF fails last in }[t, T_\text{lifetime}])\}\\ =\Pr\{(\text{IF up at }t\cap\text{VSG of IF prevented})\cap(\text{IF fails last in }[t, T_\text{lifetime}])\}\\ =K_\text{IF,DPF}\Pr\{\text{IF fails last in }[t, T_\text{lifetime}]\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{T_\text{lifetime}}d\!\Pr\{\text{IF up at }t'\cap \text{IF down in }[t', t'+dt')\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{T_\text{lifetime}}\Pr\{\text{IF up at }t'\}d\!\Pr\{\text{IF down in }[t', t'+dt')\ |\ \text{IF up at }t'\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{T_\text{lifetime}}R_\text{IF}(t')\lambda_\text{IF}dt'=K_\text{IF,DPF}\int_t^{T_\text{lifetime}}f_\text{IF}(t')dt'\\ =\frac{1}{2}K_\text{IF,DPF}\left[F_\text{IF}(t')\right]^{T_\text{lifetime}}_t=K_\text{IF,DPF}\left[F_\text{IF}(T_\text{lifetime})-F_\text{IF}(t)\right]\\ =\frac{1}{2}K_\text{IF,DPF}F_\text{IF}(T_\text{lifetime})\approx\frac{1}{2}K_\text{IF,DPF}\lambda_\text{IF}T_\text{lifetime} \tag{470.3} $$

次にSMの$OPR$での状態確率は、 $$ \Pr\{\text{SM in }OPR\}=\Pr\{\text{SM is up at }t\}=R_\text{SM}(t) \tag{470.4} $$ $OPR$から$LAT2$への微小時間での遷移確率は、SMがフォールトする場合であり、 $$ d\!\Pr\{\text{SM down in }(t, t+dt] | \text{SM is up at }t\}=(1-K_\text{SM,DPF})\lambda_\text{SM}dt \tag{470.5} $$

IFの項とSMの項を$0$から$T_\text{lifetime}$まで積分し時間平均すると、(470.3)~(470.5)を用いて、 $$ \require{cancel} M_\text{PMHF,P1}\approx\frac{1}{\bcancel{T_\text{lifetime}}}\int_0^{T_\text{lifetime}}(1-K_\text{SM,DPF})R_\text{SM}(t)\lambda_\text{SM}\frac{1}{2}K_\text{IF,DPF}\lambda_\text{IF}\bcancel{T_\text{lifetime}}dt\\\ =\frac{1}{2}(1-K_\text{SM,DPF})K_\text{IF,DPF}\lambda_\text{IF}\int_0^{T_\text{lifetime}}f_\text{SM}(t)dt\\ \approx\frac{1}{2}K_\text{IF,DPF}(1-K_\text{SM,DPF})\lambda_\text{IF}\lambda_\text{SM}T_\text{lifetime}=\frac{1}{2}\lambda_\text{SM,DPF,lat}\lambda_\text{IF,DPF}T_\text{lifetime} \tag{470.6} $$

これは図104.2の初版PMHF式(パターン1, 2のみ)の、DPFにおけるパターン1に相当する部分と(IF⇒mと読み替えることにより)正確に一致します。

図%%.1
図470.1 1st edition規格第1式


左矢前のブログ 次のブログ右矢

Detectabilityの違い (2)

posted by sakurai on January 31, 2022 #449

ここまでRAMS 2020論文と2022論文をレビューしてきて、ポイントは1st SMと2nd SMのdetectabilityの違いで結果が変わることがわかります。それを以降でまとめます。

以下の表はRAMS 2020論文において、IFのfaultがSMにより検出されるかどうかを示しています。なお、1st SMは常にdetectableです。その時のDCは$K_\text{SM,MPF}$。

表449.1 RAMS 2020のDetectabilityの表
IF non detectable (IFU) Partialy detectable (IFR)
1st SM IF non detectable ($K_\text{IF,det}=0$)
2nd SM IF non detectable ($K_\text{IF,MPF}=0$) IF detectable ($K_\text{IF,MPF}>0$)
PMHF equ. RAMS 2020 $(1-K_\text{IF,RF})\lambda_\text{IF}+2K_\text{IF,RF}\alpha$
(19), (221.9), (447.2)
$(1-K_\text{IF,RF})\lambda_\text{IF}+2K_\text{IF,RF}\beta$
(22), (222.9), (447.1)

さらにRAMS 2022では$K_\text{IF,det}=1$を検討しました。特にMPF detectedを従来のLFと同一視するのではなく、SFとしました。そのためPMHF結果式も変わってきます。

ここで、1st SMがIF detectableであれば、そのDC(カバレージ)は$K_\text{IF,RF}$であり、一般に2nd SMまでは設置しないと思われます。逆に言えば2nd SMが必要なのは、1st SMのDCがゼロの時、つまりIF non detectableであり、すなわち1st SMが主機能代替機能を持ついわゆる冗長の場合となります。

表449.2 Detectabilityの表($K_\text{IF,det}=1$を追加)
IF non detectable (IFU) Partialy detectable (IFR) Fully detectable
1st SM IF non detectable ($K_\text{IF,det}=0$) IF detectable ($K_\text{IF,det}=1$)
2nd SM IF non detectable ($K_\text{IF,MPF}=0$) IF detectable ($K_\text{IF,MPF}>0$) -

次に1st SMがIF non-detectableであれば、2nd SMはIFフォールトのレイテント防止のため、なにがしかのDC(検出率、カバレージ)を持つと考えられます。上記表はそのDCがゼロの場合はIFUモデル、ゼロでない場合はIFRモデルとしましたが、そのDCを$K_\text{IF,MPF}$で表し、ゼロの場合と非ゼロの場合をまとめ、かつRAMS 2020及び2022のPMHF式を追加すれば、以下の表となります。

表449.3 DetectabilityとPMHF式の表
Partialy detectable (IFU/IFR) Fully detectable
1st SM IF non detectable ($K_\text{IF,det}=0$) IF detectable ($K_\text{IF,det}=1$)
2nd SM Partialy detectable ($K_\text{IF,MPF}>=0$) -
PMHF equ. RAMS 2020 $(1-K_\text{IF,RF})\lambda_\text{IF}+2K_\text{IF,RF}\beta$ $(1-K_\text{IF,RF})\lambda_\text{IF}+\color{red}{2}K_\text{IF,RF}\alpha$
PMHF equ. RAMS 2022 $(1-K_\text{IF,RF})\lambda_\text{IF}+K_\text{IF,RF}\alpha$

  • RAMS 2020では$K_\text{IF,det}=0$のみを検討したため、$K_\text{IF,det}=1$は薄墨色としています。
  • 1st SMがfully detectable ($K_\text{IF,det}=1$)において、RAMS 2022のPMHF値のDPF部分が$\frac{1}{2}$になっているのは、RAMS 2022においてMPF detectedの定義を変え、レイテントではなく完全にリペアラブルとしたためです。SMがレイテントになる部分はそのままですが、IFがレイテントになる部分が全て修理されるとしたため、半分になっています。

左矢前のブログ 次のブログ右矢

Detectabilityの違い

posted by sakurai on January 26, 2022 #448

$K_\text{IF,det}$の意味

ここで、$K_\text{IF,det}$の意味を考えてみます。

  • $K_\text{IF,det}=0$の時
    1st SMがIFのフォールトをVSGから$K_\text{IF,RF}$分だけpreventしているにも関わらず、1st SMの機能はフォールト検出でない場合。すなわち、1st SMはIF代替機能を持つはずであり、冗長構成と呼ばれる。冗長の場合は$K_\text{IF,RF}=1$となる。
    規格1st editionではこの場合は考慮されていなかったが、2nd editionで考慮されることになった。

  • $K_\text{IF,det}=1$の時
    1st SMがIFのフォールトをVSGから$K_\text{IF,RF}$分だけpreventしており、1st SMの機能はフォールト検出の場合。その検出率は$K_\text{IF,RF}$であり、すなわち、1st SMはIF代替機能を持たない。
    1st SMがフォールト検出機能を持つため、IFの2nd SMは不要。一方、1st SMに対しては2nd SMが必要。これは規格の構造図、1st SMがSM1であり2nd SMがSM2である図に一致する。


左矢前のブログ 次のブログ右矢

posted by sakurai on January 12, 2022 #447

RAMS 2020

次にRAMS 2020でのPMHF式を示します。これは規格1st editionのIFUモデルをIFRモデルに拡張したものでした。ただし、表368.1で示せば、SM1 undetectableのみを扱います。従って、RAMS 2022で言う$K_\text{IF,det}=0$の時の式となります。

$$ \begin{eqnarray} \require{cancel} M_\text{PMHF,RAMS2020}&=&M_\text{PMHF,IFR}\\ &=&M_\text{PMHF,RAMS 2022}\lvert_{K_\text{IF,det}=0}\\ &=&(1-K_\text{IF,RF})\lambda_\text{IF}+2K_\mathrm{IF,RF}\beta \end{eqnarray}\tag{447.1} $$ ただし、 $$ \begin{cases} \begin{eqnarray} \alpha&:=&\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{SM,MPF}})T_\text{lifetime}+K_{\mathrm{SM,MPF}}\tau],\\ \beta&:=&\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{MPF}})T_\text{lifetime}+K_{\mathrm{MPF}}\tau],\\ K_{\mathrm{MPF}}&:=&K_{\mathrm{IF,MPF}}+K_{\mathrm{SM,MPF}}-K_{\mathrm{IF,MPF}}K_{\mathrm{SM,MPF}} \end{eqnarray} \end{cases} $$ これは以前の式(222.9)と一致します。

一方、規格1st editionの式はIFUモデルであり、(447.1)において、$K_{\mathrm{IF,MPF}}=0$とおけば、$K_{\mathrm{MPF}}=K_\mathrm{SM,MPF}$であるから、$\beta=\alpha$となり、

$$ \begin{eqnarray} \require{cancel} M_\text{PMHF,1st edition}&=&M_\text{PMHF,IFU}\\ &=&M_\text{PMHF,RAMS 2022}\lvert_{K_\text{IF,det}=0,K_\text{IF,MPF}=0}\\ &=&(1-K_\text{IF,RF})\lambda_\text{IF}+2K_\mathrm{IF,RF}\alpha\\ \end{eqnarray}\tag{447.2} $$ となります。これは2020論文(19)ですが、規格1st editionの第3の式に相当し、(221.9)と同一です。

RAMS 2020では$K_\text{IF,det}=0$の時しか検討しませんでしたが、RAMS 2022の表を用いて、$K_\text{IF,det}=1$の時も併せた式を示せば、 $$ \begin{eqnarray} \require{cancel} M_\text{PMHF,RAMS2020}&=&(1-K_\text{IF,RF})\lambda_\text{IF}+\color{red}{2}K_\text{IF,RF}K_\text{IF,det}\alpha+2K_\text{IF,RF}(1-K_\text{IF,det})\beta\\ \end{eqnarray}\tag{447.3} $$ となります。RAMS 2022との相違は(447.3)の赤字で示した係数2の違いとなります。


左矢前のブログ 次のブログ右矢

RAMS 2020とRAMS 2022の違い

posted by sakurai on January 10, 2022 #446

さて、RAMS 2022にRAMS 2020で発表したPMHF式を修正した式を投稿し採択されましたが、ここで両方の式をまとめておきます。便宜上RAMS 2022の式はより広い範囲をカバーするため、RAMS 2022の式から先に説明します。

RAMS 2022

RAMS 2022では、後述のRAMS 2020の式を拡張しました。具体的にはISPCE 2017で筆者が導入した$K_\text{IF,det}$を再び導入したものです。$K_\text{IF,det}$の意味は、1st SMのIFに対する機能であるVSG抑止能力に対する検出能力の比であり、以下のように条件付き確率で表される係数です。

$$ K_\text{IF,det}=\Pr\{\text{IF detected}\ |\ \text{IF prevented}\} $$

しかしながらこの条件付き確率はSMのアーキテクチャにより一意に決定され、 $$ K_\text{IF,det}= \begin{cases} \begin{eqnarray} &0&\ \ \text{if subsystem is redundant}\\ &1&\ \ \text{if subsystem is nonredundant} \end{eqnarray} \end{cases} $$ のように2値をとります。

この$K_\text{IF,det}$及び、$K_\text{IF,RF}$, $K_\text{IF,MPF}$を加えたIFに関するKパラメータ及び、$K_\text{SM,MPF}$のSMに関するKパラメータによりフォールトを分類し、以前示した表368.1を導出しています。

そして、$K_\text{IF,det}=1$の場合にMPF detectedをレイテントフォールト扱いとしないとして確率微分方程式を立て、それを解いています。その結果を示せば、 $$ \begin{eqnarray} \require{cancel} M_\text{PMHF,RAMS2022}&=&(1-K_\text{IF,RF})\lambda_\text{IF}+K_\text{IF,RF}K_\text{IF,det}\alpha+2K_\text{IF,RF}(1-K_\text{IF,det})\beta\\ \end{eqnarray}\tag{446.1} $$ ただし、 $$ \begin{cases} \begin{eqnarray} \alpha&:=&\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{SM,MPF}})T_\text{lifetime}+K_{\mathrm{SM,MPF}}\tau],\\ \beta&:=&\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{MPF}})T_\text{lifetime}+K_{\mathrm{MPF}}\tau],\\ K_{\mathrm{MPF}}&:=&K_{\mathrm{IF,MPF}}+K_{\mathrm{SM,MPF}}-K_{\mathrm{IF,MPF}}K_{\mathrm{SM,MPF}} \end{eqnarray} \end{cases} $$

これにおいて、まずnon redundantの場合である$K_\text{IF,det}=1$とすれば、

$$ \begin{eqnarray} M_\text{PMHF,NRD}&=&M_\text{PMHF,RAMS 2022}\lvert_{K_\text{IF,det}=1}\\ &=&(1-K_\text{IF,RF})\lambda_\text{IF}+K_\text{IF,RF}\alpha \end{eqnarray}\tag{446.2} $$ これは(374.1)と同一です。

他方、redundantの場合である、$K_\text{IF,det}=0$かつ$K_\text{IF,RF}=1$とすれば、 $$ \begin{eqnarray} M_\text{PMHF,RD}&=&M_\text{PMHF,RAMS 2022}\lvert_{K_\text{IF,det}=0,K_\text{IF,RF}=1}\\ &=&2\beta \end{eqnarray}\tag{446.3} $$ これは(374.2)と同一です。

また、IFRモデルでは、 $$ \begin{eqnarray} M_\text{PMHF,IFR}&=&M_\text{PMHF,RAMS 2022}\lvert_{K_\text{IF,det}=0}\\ &=&(1-K_\text{IF,RF})\lambda_\text{IF}+2K_\text{IF,RF}\beta\\ \end{eqnarray}\tag{446.4} $$ これは2020論文(22)、(108.2)及び(222.9)と同一です。

さらにIFUモデルでは、 $$ \begin{eqnarray} M_\text{PMHF,IFU}&=&M_\text{PMHF,RAMS 2022}\lvert_{K_\text{IF,det}=0,K_\text{IF,MPF}=0}\\ &=&(1-K_\text{IF,RF})\lambda_\text{IF}+2K_\text{IF,RF}\alpha \end{eqnarray}\tag{446.5} $$ これは2020論文(19)、(221.9)と同一です。


左矢前のブログ 次のブログ右矢


ページ: