Posts Tagged with "ISO 26262"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

$Q(t)$とChatGPT (13)

posted by sakurai on August 8, 2023 #640

人間:

ChatGPTはAIで機械であるのに、機械的な計算誤りをするのはなぜでしょうか?具体的には、 $$Q(t)=(1−K_\text{MPF})F(t)+K_\text{MPF} F(u)$$ を時間微分したら、 $$q(t)=\frac{dQ(t)}{dt}=(1−K_\text{MPF})f(t)−K_\text{MPF} f(u)$$ となると回答しました。これは単純な計算ミスですが、どうしてミスしたのでしょうか?

ChatGPT:

大変申し訳ございません。ChatGPTが数学的なミスを犯す理由は、その基本的な動作の仕組みに由来します。GPTは、大量のテキストデータから人間の言語を模倣する方法を学び、特定の入力に対する最も適切な出力を予測します。しかし、それは単に学習データ内のパターンを検出することでこれを達成しており、内部的には数学的な演算を理解しているわけではありません。

したがって、ユーザーが求めた微分の計算を行うとき、ChatGPTは実際に微分の計算を実行するわけではなく、訓練データ内で見たパターンに基づいて最も適切な答えを生成しようとします。そのため、訓練データに含まれるパターンが間違っていたり、パターンが不完全だったりすると、結果として間違った答えを出力することがあります。

また、微分などの数学的操作は、文脈によって適用されるべき正しい規則が異なることがしばしばあります。これに対応するためには、真の数学的理解が必要で、現行のAIモデルではこれを完全には達成できません。

以上の理由から、ChatGPTは時折、数学的な誤りを犯すことがあります。それらのミスは、現行のAI技術の制限を反映したものであり、人間が間違いを犯すのとは根本的に異なる形で発生します。


「内部的には数学的な演算を理解しているわけでは」無いとのことです。むしろ、単なるパターンマッチでこれほどの推論ができるものでしょうか。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (12)

posted by sakurai on August 7, 2023 #639

人間:

説明が間違いです。$f(t)$は故障率ではなくPDFと呼ばれます。

ChatGPT:

ご指摘いただき、ありがとうございます。修正いたします。

確かに、$f(t)$ は確率密度関数(PDF: Probability Density Function)または故障率密度(PDT: Point Density of Failures)と呼ばれ、時間 $t $における故障の発生確率密度を表します。

同様に、$f(u)$ は時間 $u$ での故障の発生確率密度を表し、$K_\text{MPF}$ は検出率を表します。これは、時間$ t $と $u=t-n\tau$ における故障の一部が検出され修理されることを示しています。

したがって、$q(t)$ は以下のように表されます。

$$ q(t) = (1-K_\text{MPF})f(t) - K_\text{MPF} f(u) $$

ここで、$u=t-n\tau$ です。これは、故障が発生し、それが検出され修理されない確率と、前回の修理以降の故障が検出・修理される確率の差を表しています。

人間:

差ではなく和ではないですか?さらに最後の行ですが、$f(t)$は確率ではなく、確率密度です。

ChatGPT:

ご指摘いただき、ありがとうございます。その通りです。私の説明は誤っていました。

確かに、$f(t)$ は確率ではなく、確率密度関数(Probability Density Function、PDF)です。これは、時間 $t$ における故障の確率密度を表します。

同様に、$f(u)$ は時間 $u$ での故障の確率密度を表します。

したがって、PUD (Point Unavailable Density) の $q(t)$ は以下のように表されます:

$$ q(t) = \img[-1.35em]{/images/withinseminar.png} $$

これは、時間 $t$ における故障の確率密度とそれが未検出・未修理である確率、および前回の修理以降の故障が検出・修理される確率密度の和を表しています。


ChatGPTは機械にも関わらずよく計算間違いをします。機械なら機械的な計算くらいは間違えないで欲しいものです。ついでにミスの理由を聞いてみます。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (11)

posted by sakurai on August 4, 2023 #638

人間:

$Q(t)$ (Point Unavailability)を時間微分したものが$q(t)$ (Point Unavailable Density; PUD)ですが、どのような式になりますか?

ChatGPT:

不稼働度 $Q(t)$ の時間微分は、その瞬間の不稼働確率密度 $q(t)$ を与えます。先ほどの $Q(t)$ の式から、以下のように $q(t)$ を得ることができます。

$$ q(t) = \frac{dQ(t)}{dt} $$

この微分を計算すると、次の結果が得られます。

$$ q(t) = \img[-1.35em]{/images/withinseminar.png} $$

ここで、$f(t)$ は時間 $t$ における故障率(PDT: Point Density of Failures)であり、 $f(u)$ は時間 $u$ における故障率です。また、 $K_\text{MPF}$ は検出率を表します。これは、時間 $t$ と $u=t-n\tau$ における故障の一部が検出され修理されることを示しています。


第2項の符号が誤っています。また、説明において、$f(t)$を誤って「故障率」と呼んでいるのは見過ごせません。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (10)

posted by sakurai on August 3, 2023 #637

人間:

それでは不稼働度$Q(t)$はどうなりますか?$F(t)$を用いて表してください。できるかぎり簡約化して$F(t)$項でまとめて表してください。定数は先頭に出してください。

ChatGPT:

稼働度 $A(t)$ の最終形を $1 - F(t)$ によって表現し、それを用いて不稼働度 $Q(t) = 1 - A(t)$ を求めます。

稼働度 $A(t)$ の最終形式は次の通りでした:

$$A(t) = (1 - K_\text{MPF}) (1 - F(t)) + K_\text{MPF} (1 - F(u))$$

これを $Q(t)$ の式に代入します:

$$Q(t) = 1 - {(1 - K_\text{MPF})(1 - F(t)) + K_\text{MPF}(1 - F(u))}$$

これを整理します:

$$Q(t) = F(t) - K_\text{MPF} (F(t) - F(u))$$

更にこれを整理すると、

$$Q(t) = (1 - K_\text{MPF})F(t) + K_\text{MPF} F(u) $$

となります。これは不稼働度 $Q(t)$ が不信頼度 $F(t)$ と $F(u)$ の組み合わせで表されることを示しています。ただし、これは修理の間隔 $\tau$ が一定である場合に限ります。


先生側(人間側)の手助けもあり、$Q(t)$を正しく導出できました。一方、ChatGPTとの会話の中で、(626.2)の式の誤りも検出できました。教えるのが一番の勉強とはまさにこのことです。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (9)

posted by sakurai on August 2, 2023 #636

人間:

$A(t)$はどうなりますか?$u\equiv t-n\tau$として最終形の$A(t)$を$t$と$u$で表してください($n$と$\tau$を消去)。$R(t)$項でまとめ、定数は項の先頭に出してください。

ChatGPT:

変数変換 $u \equiv t - n\tau$ を用いて稼働度 $A(t)$ の表現を変換します。初めに求めた最終形

$$ A(t) = R(t) - K_\text{MPF} R(t) + K_\text{MPF} R(t - n\tau) $$

で、$t - n\tau$ を $u$ とすると、式は以下のように書き換えられます:

$$ A(t) =\img[-1.35em]{/images/withinseminar.png} $$

これは、時間 $t$ での稼働度 $A(t)$ が信頼度 $R(t)$ と前回の修理からの時間 $u$ での信頼度 $R(u)$ の組み合わせであることを示しています。ここで、修理の間隔 $\tau$ と修理の回数 $n$ が消去されています。


細かく指示した結果、$A(t)$を正しく導出できました。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (8)

posted by sakurai on August 1, 2023 #635

人間:

なるほど、その理由がわかりました。 $$m(x)=K_\text{MPF}F(i\tau)$$ としていたのが誤りでした。

正しくは、$m(x)$はリニューアルデンシティなので、瞬間の変化量です。修理量は検査区間において 積分した故障について一定値$K_\text{MPF}$をかけるので、 $$\int_0^\tau m(x)dx = \int_0^\tau K_\text{MPF}f(x)dx = K_\text{MPF}F(\tau)$$ とすべきでした。これであれば次元の矛盾は解消されます。

ChatGPT:

ご説明いただきありがとうございます。おっしゃるとおり、$m(x)$はリニューアル密度として瞬間的な変化を表し、故障の累積に一定の値をかける形で修理量が表現されます。

これに基づき、$\int_0^{\tau} m(x)dx = \int_0^{\tau} K_\text{MPF} f(x)dx = K_\text{MPF}F(\tau)$と修正した形で表現すると、次元の矛盾が解消されます。

したがって、稼働度 $A(t)$ の方程式は次のようになります。

$$ A(t) = R(t) + K_\text{MPF} \left[ \sum_{i=1}^{n} (1 \cdot R(t-i\tau) - R(\tau) \cdot R(t-i\tau)) \right] $$

さらに、$i=n$ のときの第1項と、$j=0$ のときの第2項のみがキャンセルされず残ります。そのため、結果は次のようになります。

$$ A(t) = \img[-1.35em]{/images/withinseminar.png} $$

これにより、次元的な問題が解消され、稼働度 $A(t)$ の表現が一貫性を持つようになりました。ただし、具体的な値は $R(t)$ の形状や特性、そして $K_\text{MPF}$ の値によります。


(626.2)の式は誤っていました(現在は修正済み)。$m(x)$は確率密度なので区間で積分しなければ修理度になりません。ChatGPTとの対話により、この誤りに気付くことができました。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (7)

posted by sakurai on July 31, 2023 #634

人間:

ところで、$A(t)$の式は次元間違いがあるのではないでしょうか?$A(t)$も$R(t)$も無次元ですが、$K_\text{MPF}$のかかる項では$K_\text{MPF}$と$R(t)$が無次元なのに$\tau$が時間の次元を持ちます。

ChatGPT:

ご指摘いただいた通り、$A(t)$と$R(t)$は両方とも無次元量で、これらは時間 $t$ によって変化します。一方で、$\tau$ は時間の次元を持ちます。そのため、$K_\text{MPF} \cdot \tau$ の項が時間の次元を持ってしまいます。これは次元的に矛盾が生じてしまいます。

あなたが初めに紹介した方程式は、

$$ A(t) = R(t) + \int_{0}^{t} m(x) \cdot R(t - x) dx $$

であり、ここで $m(x)$ は修理率で時間の逆数の次元を持つ量でした。したがって、修理率を反映した項は時間の次元を持たないということは不適切かもしれません。

したがって、もし $K_\text{MPF}$ が実際に修理率を表すのであれば、それは時間の逆数の次元を持つべきで、修理期間 $\tau$ を乗じると無次元になるべきです。この場合、次元的には問題ありません。

あるいは、$K_\text{MPF}$ が無次元であるならば、$K_\text{MPF} \cdot \tau$ が無次元となるように、別の無次元パラメータを導入する必要があります。たとえば、$K_\text{MPF}$ を修理率に関する無次元化パラメータとして解釈することも考えられます。ただし、その場合、$K_\text{MPF}$ の解釈やその値をどのように決定するかが問題となります。

最終的な $A(t)$ の式を得るためには、これらの考慮事項を含めた更なる情報が必要になります。


ChatGPTも何かおかしいと思っているようです。少々考えてみましょう。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (6)

posted by sakurai on July 28, 2023 #633

人間:

計算が間違っているようです。$i=1, 2, 3, ..., n$とし、$j=(i-1)=0, 1, 2, ... n-1$とします。和の項が大部分キャンセルするので、$\sum$の項をそれぞれ第1、第2項とすると、第1項が$i=n$のとき、第2項が$j=0$のときのみがキャンセルされずに残ります。$A(t)$はどうなりますか?

ChatGPT:

了解しました。インデックス $i$ を $1, 2, 3, ..., n$ とし、$j = i - 1$ を $0, 1, 2, ..., n-1$ とします。そして、和の項がほとんどキャンセルすることを利用します。このとき、$A(t)$ の方程式は次のようになります。

$$ A(t) = R(t) + K_\text{MPF} \cdot \tau \left[ \sum_{i=1}^{n} R(t-i\tau) - \sum_{j=0}^{n-1} R(t-j\tau) \right] $$

そして、$i=n$ のときの第1項と、$j=0$ のときの第2項のみがキャンセルされず残ります。そのため、結果は次のようになります。

$$ A(t) = R(t) + K_\text{MPF} \cdot \tau \left[ R(t-n\tau) - R(t) \right] $$

したがって、最終的な $A(t)$ の式は次のようになります。

$$ A(t) = R(t) - K_\text{MPF} \cdot \tau \left[ R(t) - R(t-n\tau) \right] $$

この式は、時間 $t$ での稼働度 $A(t)$ を表しています。ただし、具体的な値は $R(t)$ の形状や特性、そして $K_\text{MPF}$ の値によります。


丁寧に教えた結果、$A(t)$の式を導出できました。ただし、元々$A(t)$の式は正しくないことに注意。その点を指摘します。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (5)

posted by sakurai on July 27, 2023 #632

記事「$Q(t)$とChatGPT (4)」の続きです。

人間:

最後が誤っています。$R(\tau)R(t-i\tau)=R(t-(i-1)\tau)$と変形されます。

ChatGPT:

大変申し訳ありません。指摘いただいた通り、修理後に信頼度がリセットされるので、$R(\tau) \cdot R(t - i\tau)$は実際には次の修理までの信頼度、つまり$R(t - (i-1)\tau)$ となるべきです。

修正した結果は以下のようになります:

$$ A(t) = R(t) + K_\text{MPF} \cdot \tau \left[ \sum_{i=1}^{n} R(t-i\tau) - \sum_{i=1}^{n} R(t-(i-1)\tau) \right] $$

これをさらに整理して、

$$ A(t) = R(t) + K_\text{MPF} \cdot \tau \left[ R(t) - R(t - n\tau) \right] $$

となります。この形にするためには、シグマの和の項がキャンセルして $R(t) - R(t - n\tau)$ となることを利用しました。

この結果は時間 $t$ での稼働度 $A(t)$ を示していますが、$R(t)$ の具体的な形状や特性により結果は変わります。また、$K_\text{MPF}$ がシステムの性能に依存する一定の値であると仮定しています。


計算において符号の誤りがあるようです。さらに、元々$A(t)$の式は正しくないことに注意。


左矢前のブログ 次のブログ右矢

posted by sakurai on July 26, 2023 #631

表631.1はRAMS 2024の正式採択までのマイルストーンを示しています。

所属および名前無し版の論文およびプレゼンテーションの締め切りは7月末であり、既に投稿済みですので、表を更新しました。

表631.1 RAMS 2024へのマイルストーン
期限 マイルストーン 状態
2023/4/30 アブストラクト投稿締め切り(システム入力) 投稿済
2023/6/10⇒2023/5/25 アブストラクト採択結果 採択済
2023/8/1 論文、プレゼン投稿締め切り(名前、所属無し版) 投稿済
2023/9/1 第1回論文、プレゼン資料査読コメント受領
2023/10/10 改訂版論文、プレゼン投稿締め切り(名前、所属無し版)
2023/10/22 最終査読コメント受領
2023/10/10 学会出席登録締め切り
2023/10/10 最終論文、プレゼン投稿締め切り(名前、所属有り版)

左矢前のブログ 次のブログ右矢


ページ: