Posts Tagged with "FTA"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

定量FTAによるPMHF計算法 (7)

posted by sakurai on April 6, 2023 #591

規格の例題のALUの永久故障に関するパラメータをまとめます。図は論文に投稿したターゲットサブシステムの図です。

図%%.1
図591.1

この図に基づき、規格のFTから得られたobservable parametersを以下に示します。 $$ T_\text{lifetime}=5,000 [H] $$

$$ \begin{eqnarray} \text{IF}\quad &&\left\{ \begin{array}{l} \lambda&=&3.48\times10^{-11} [H^{-1}]\\ DC&=&\text{nonexistent}\\ \tau&=&\text{nonexistent} \end{array} \right.\\ \text{SM1}\quad &&\left\{ \begin{array}{l} \lambda&=&2.9\times10^{-12} [H^{-1}]\\ DC1&=&0.2\\ DC2&=&\text{nonexistent}\\ \tau&=&\text{nonexistent} \end{array} \right.\\ \text{SM2}\quad &&\left\{ \begin{array}{l} \lambda&=&0 \\ DC2&=&0.9\\ \tau&=&1.0 [H] \end{array} \right. \end{eqnarray} $$

それぞれ、IF, SM1, SM2について説明を示します。

  • ミッションタイム:車両寿命$T_\text{lifetime}$です。
  • IF:ALUはIFなのでそもそもカバレージ$DC$も定期検査周期$\tau$もありません
  • SM1:ALUは冗長系ではないため、ALUはレイテントフォールトとなりません。そのため、ALUにはSM2は存在せず、LFカバレージ$DC2$もなければ定期検査周期$\tau$もありません。一方、ALUに対するVSG抑止カバレージ$DC1$は存在します。
  • SM2:SM2は故障しないため、SM2の故障率$\lambda$はゼロです。一方、SM1に対するLFカバレージ$DC2$及び定期検査周期$\tau$が存在します。

左矢前のブログ 次のブログ右矢

定量FTAによるPMHF計算法 (6)

posted by sakurai on April 5, 2023 #590

今までの結果を数式にまとめます。ORゲートまで戻るとLFの項にlatent確率、detected/percieved確率の2つだけでなく、3つ目としてサブツリー確率の和となっています。同様なので本記事では省略しますが、サブツリーの内容はアラームのフォールトとなっています。検出機構だけでなくアラームも2nd SMの一部であるため、LFとして同様に、検出部分と非検出部分に分解して加算するのが正しい方法です。

図%%.1
図590.1 規格1st editionのFTA図構成

今までの式をまとめると、確率は、 $$ Q=\lambda_\text{IF}T_\text{lifetime}\left[(1-DC_\text{1})+\left\{\lambda_\text{SM1}T_\text{lifetime}(1-DC_\text{2})+\frac{1}{2}\lambda_\text{SM1}\tau DC_\text{2}\right\}\cdot DC_\text{1}\right]\tag{590.1} $$ これを時間平均したものがPMHFなので$T_\text{lifetime}$で割れば、 $$ \require{color} \definecolor{pink}{rgb}{1.0,0.8,1.0} M_\text{PMHF}=(1-DC_\text{1})\lambda_\text{IF}+DC_\text{1}\lambda_\text{IF}\left[(1-DC_\text{2})\lambda_\text{SM1}T_\text{lifetime}+\frac{1}{2}DC_\text{2}\lambda_\text{SM1}\tau\right] \tag{590.2} $$ ここで、 $$ \begin{eqnarray} \left\{ \begin{array}{l} (1-DC_\text{1})\lambda_\text{IF}&=&\lambda_\text{RF}\\ DC_\text{1}\lambda_\text{IF}&=&\lambda_\text{IF,MPF}\\ (1-DC_\text{2})\lambda_\text{SM1}&=&\lambda_\text{SM1,MPF,lat}\\ DC_\text{2}\lambda_\text{SM1}&=&\lambda_\text{SM1,MPF,dp} \end{array} \right.\\ \end{eqnarray} \tag{590.3} $$ であることを用いれば、 $$ M_\text{PMHF}=\lambda_\text{RF}+\frac{1}{2}\lambda_\text{IF,MPF}(\colorbox{pink}{2}\lambda_\text{SM1,MPF,lat}T_\text{lifetime}+\lambda_\text{SM1,MPF,dp}\tau) \tag{590.4} $$ とまとめられるものの、レイテントフォールトの係数が誤っているように思います。RWBの調査をしなければ不明ですが、ミッションタイムを手入力したときのみ$\frac{1}{2}$を掛ける仕様なのでしょうか。もしそうならレイテントの場合だけは、$\frac{1}{2}T_\text{lifetime}$を手入力する必要があります。

正しくは、フォールト順序がSM1⇒IFの場合には、(590.4)のピンクで示した"2"を削除した、 $$ M_\text{PMHF}=\lambda_\text{RF}+\frac{1}{2}\lambda_\text{IF,MPF}(\lambda_\text{SM1,MPF,lat}T_\text{lifetime}+\lambda_\text{SM1,MPF,dp}\tau) \tag{590.5} $$ となります。このようにマニュアルで木構造を構築するのはかなり大変なので、ツールにPMHFモデルが組み込まれることが望まれます。


左矢前のブログ 次のブログ右矢

定量FTAによるPMHF計算法 (5)

posted by sakurai on April 4, 2023 #589

次にSM1のフォールトが、2nd SMであるSM2により検出可能にもかかわらずLFとなる確率を示すANDゲートです。

SM2によりSM1のフォールトが検出されない部分は前ページのツリーでした。このページはSM2によりSM1のフォールトが100%検出される部分なので、基本的にはLFにはならないように思われます。実は、SM2の検査周期以内ではSM1のフォールトの検出できないことから、微小な確率が残ります。

図%%.1
図589.1 規格1st editionのFTA図構成

ANDゲートの左下の事象はSM1のフォールトが検査周期内にフォールトする確率です。故障率に掛ける時間がデフォールトのミッションタイムである車両寿命ではなく、特殊なミッションタイムである検査周期となるため、注意喚起のため本記事でのみ、事象を黄色で塗っています。そのため事象には、故障率$\lambda_\text{SM1}$だけでなくミッションタイム$\tau$も入力します。計算では以下のように$\frac{1}{2}$をかけているようで、確率は $$ \require{color} \definecolor{pink}{rgb}{1.0,0.8,1.0} Q=\frac{1}{2}\lambda_\text{SM1}\tau=\colorbox{pink}{0.5(?)}\cdot2.9\times10^{-12}\cdot1=1.45\times10^{-12}\tag{589.1} $$ となっています。0.5の理由は不明です。

ANDゲートの右下の事象はSM2によるレイテントフォールトカバレージで、$DC_\text{2}$を示します。 $$ Q=DC_\text{2}=0.9\tag{589.2} $$ となっています。


左矢前のブログ 次のブログ右矢

定量FTAによるPMHF計算法 (4)

posted by sakurai on April 3, 2023 #588

別ページのサブツリーです。これはSM1のフォールトによるLFの項を表すORゲートです。内容は3つの確率の加算となります。

図%%.1
図588.1 規格1st editionのFTA図構成

確率の和は、 $$ Q=2.176957\times10^{-9}\tag{588.1} $$ となっています。

次にORゲートの左下に接続されるANDゲートは、2nd SMであるSM2によって検出されないSM1のフォールトのLFを表す確率です。 その確率は、 $$ Q=1.45\times10^{-9}\tag{588.2} $$ となっています。

図%%.2
図588.2 規格1st editionのFTA図構成

ANDゲートの左下の事象は、SM1の故障率事象です。同様にミッションタイムが自動掛け算され、 $$ Q=\lambda_\text{SM1}T_\text{lifetime}=2.9\times10^{-12}\cdot5.0\times10^{3}=1.45\times10^{-8} $$ という計算が実行されています。

ANDゲートの右下の事象は、SM2のレイテントフォールトカバレージの残余$1-DC_\text{2}$です。

$$ Q=1-DC_\text{2}=0.1=1.0\times10^{-1}より、\\ DC_\text{2}=90\% $$ と逆算されます。


左矢前のブログ 次のブログ右矢

定量FTAによるPMHF計算法 (3)

posted by sakurai on March 31, 2023 #587

前ページ右下のORゲートから左下への事象です。これはRFの項を表しており、ALUのフォールトカバレージ残余である$1-DC$が接続されています。

図%%.1
図587.1 規格1st editionのFTA図構成

ここで確率に着目すれば、 $$ Q=1-DC_\text{1}=0.8=8.00\times10^{-1}より\\ DC_\text{1}=20\% \tag{587.1} $$ と逆算されます。$DC_\text{1}$のような無次元の定数にはミッションタイムは自動掛算されません。

次に同じくORゲートから右下への事象です。これはDPF確率を示すANDゲートです。

図%%.2
図587.2 規格1st editionのFTA図構成

このANDゲートの左下への分岐はLFのサブツリーとなっています。

右下への事象はIFのDPFフォールトを表す事象で、具体的にはSM1でVSG抑止された部分である$DC$を示しています。 $$ Q=DC_\text{1}=0.2=2.00\times10^{-1}より、\\ DC_\text{1}=20\% \tag{587.2} $$ となっています。


左矢前のブログ 次のブログ右矢

定量FTAによるPMHF計算法 (2)

posted by sakurai on March 30, 2023 #586

図585.1が小さいので拡大して見ていきます。まず部分FTのトップのANDゲートです。車両寿命間におけるALUの永久故障確率を表しています。

図%%.1
図586.1 規格1st editionのFTA図構成

ANDゲートの左下の事象はALUの永久故障率です。ALUの2つの数字、故障率と確率に着目すれば、本文に$T_\text{lifetime}=5,000[H]$とあることを用いて、 $$ \lambda_\text{IF}=3.48\times10^{-11} および\\ Q=\lambda_\text{IF}T_\text{lifetime}=3.48\times10^{-11}\cdot5.0\times10^{3}=1.74\times10^{-7}\tag{586.1} $$ となります。

事象には故障率$\lambda_\text{IF}$を入力します。ここで故障率は$[H^{-1}]$の次元を持つため、FTAツールがデフォールトのミッションタイム(運用時間)である車両寿命$T_\text{lifetime}$を自動的に掛け、確率$Q$に直して計算します。

注目すべき記号としてLがあります。これはプライオリティを示すもので、Lで示される側のフォールトが後で生起する場合に限定されます。従って本FTはフォールト順序がSM1⇒IFの順であり、冗長性は持たないという前提です。すなわちDPF項には$\frac{1}{2}$が必要です。

トップのANDゲートの右下のORゲートは、ALUの検出されない永久故障と書かれており、SPFとDPFの確率を加算するためのORゲートです。


左矢前のブログ 次のブログ右矢

定量FTAによるPMHF計算法

posted by sakurai on March 27, 2023 #585

昨日某社様向けにISO 26262ハードウェアセミナーを実施しましたが、以下のご質問を受けました。

Q「DPFを表すにはIFのフォールトの基事象とSMのフォールトの基事象をANDゲートで結べば良いが、定量FTAによりPMHFを表すには具体的にはどうすれば良いのでしょうか」

これは実務においては重要なノウハウとなります。その理由は規格ではPMHFの目標値がいくらで、それを満足しなければならないと書かれていますが、実際のECUでどのように計算するかにはほとんど言及が無いためです。わずかにPart 10に式が掲載されているに過ぎません。実は1st editionではいくつかの例が掲載されていましたが、2nd editionで削除されています。

結論から言えば、定量FTAでイベントの組み合わせでPMHF式を構築することになります。まず、1st editionに参考になるFT図が掲載されているので、これを子細に見てみます。

図%%.1
図585.1 規格1st editionのFTA図構成

左のFT図はALUのフォールトのFTであり2つに分離していたものを組み合わせています。半分より上側のFTがちょうどSPF/RF項を、下側のFTがDPF項を表しています。FTツールではフォールトイベントを確率で表現するため、故障率には指定しなければミッションタイム$T$が自動でかかり、確率として表します。例外はLFの黄色で示すイベントで、ミッションタイムを手で入力し、$\tau$=定期検査周期としています。

FTは確率$P$を表し、そのまま式で表すと①式となります。PMHF式は車両寿命においてSG侵害確率の時間平均であるため、①を$T$で割ると②の式となります。これはSM⇒IFの順にフォールトが起きる場合のPMHF式と1/2を除き一致します。さらにIF⇒SMの順のフォールトのPMHFを合わせると②となりますが、前提としてIFのフォールトもLFとなる必要があります。これは冗長を意味するものです。

記事の(10.1)に1st editionのPMHF式を掲載していますが、1/2を除き②と一致していることが確認されます。 $$ M_\text{PMHF} = \lambda_\text{RF}+\frac{1}{2}\lambda_\text{M,MPF}(\lambda_\text{SM,MPF,l}T_\text{lifetime}+ \lambda_\text{SM,MPF,d}\tau) \tag{10.1} $$ これをまとめたものをRAMS 2021に投稿し、採択されたので、以下に場所を示します。

https://ieeexplore.ieee.org/document/9605710


左矢前のブログ 次のブログ右矢

posted by sakurai on October 14, 2020 #323

弊社では、定量FTAを用いてPMHFを見積もる論文を、RAMS 2021に提出済みです。さて、PMHFが業界でどのように見積もられているかを調べたところ、この資料を見つけました。

図%%.1
図323.1 ある資料のFT構成法

図323.1は少々複雑なので、思想を曲げない範囲で簡略化します。まず、SPFはDC=0の時のRFであるため、SPF/RFをひとまとめにし、 $$ \lambda_\text{IF,RF}=(\lambda_\text{G}+\lambda_\text{K}+\lambda_\text{B}+\lambda_\text{F})(1-DC)=(1-DC)\lambda_\text{IF}\tag{323.1} $$ (323.1)はRFの式そのものであり、OKです。

次に、DPF1ですが、これはSM1の不信頼度がかかっていることから、SM1が先にLFとなり、続いてIFがフォールトしVSGとなるDPFだと考えられます。DPF1は、 $$ \lambda_\text{DPF1}=\lambda_\text{IF}\cdot DC\cdot\frac{1}{2}\lambda_\text{SM1}T=\frac{1}{2}DC\lambda_\text{IF}\lambda_\text{SM1}T, ただし、\lambda_\text{SM1}=\lambda_\text{C}+\lambda_\text{I}+\lambda_\text{M}\tag{323.2} $$ Fault Tree中は故障率で書かれているので、少々心配になりますが(このような誤りが多々あるので)、きちんと$T$をかけて単位を[1/H]としているので、(323.2)もOKです。

最後にDPF2は、IFの不信頼度がかかっていることから、IFが先にLFとなり、続いてSM1がフォールトしVSGとなるDPFだと考えられます。DPF2は、 $$ \lambda_\text{DPF2}=\lambda_\text{SM1}\cdot\frac{1}{2}\lambda_\text{IF}T=\frac{1}{2}\lambda_\text{IF}\lambda_\text{SM1}T\tag{323.3} $$ 残念ながら(323.3)は誤りです。以下に列挙すると、誤りは、

  1. まず、IFとSM1の両方がリペアラブルではないことです。もっともこれは規格式も誤っているので見逃します。

  2. 次に、$\lambda_\text{DPF2}$において、$\lambda_\text{IF}$に$DC$がかかっていないことが誤りです。なぜなら$\lambda_\text{IF}$のうち、$1-DC$分、つまり$(1-DC)\lambda_\text{IF}$がRFとなり、残りの$DC$分、つまり$DC\lambda_\text{IF}$がLFとなるためです。従って、正しくは $$ \lambda_\text{DPF2}=\lambda_\text{SM1}\cdot\frac{1}{2}\lambda_\text{IF}DC T=\frac{1}{2}DC\lambda_\text{IF}\lambda_\text{SM1}T $$ ところが、$\lambda_\text{DPF1}$と比較すればわかるように$\lambda_\text{DPF1}\equiv\lambda_\text{DPF2}$なので、実は別のツリーとする必要はありません。

  3. さらに、2nd SMのカバレージであるDC2が全く考慮されていないことも問題です。ただし、DC2=0のワーストケースの評価であれば問題ありません。

従って、大きな誤りは2番目の項目となります。とはいえ、ほとんど全ての論文において定量FTAでDPFまで計算しているものが無いことから、本資料は良いほうだと言えます。

結論として、上記2.の修正を行えば、「故障順序によらないPMHF式」(105.6)と一致します。ここで(105.6)を再掲すれば、 $$ M_{\mathrm{PMHF}}= (1-K_{\mathrm{IF,RF}})\lambda_{\mathrm{IF}}+ K_{\mathrm{IF,RF}}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}(1-K_{\mathrm{SM,MPF}})T_\text{lifetime}\\ \tag{105.6} $$ 次に、2nd SMが不在というワーストケースを仮定して$K_{\mathrm{SM,MPF}}=0$とし、$K_{\mathrm{IF,RF}}=DC$と置きなおせば、 $$ M_{\mathrm{PMHF}}=(1-K_{\mathrm{IF,RF}})\lambda_{\mathrm{IF}}+ K_{\mathrm{IF,RF}}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}T_\text{lifetime}\\ =(1-DC)\lambda_{\mathrm{IF}}+ DC\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}T_\text{lifetime}\\ \tag{323.4} $$ (323.1)~(323.3)を全て加えると、(323.4)と一致することがわかります。


左矢前のブログ 次のブログ右矢

posted by sakurai on September 3, 2020 #308

FTA

A. 定量的な FTA の適用可能性と使用の制限

PMHF論文das2016$\dagger$の続きです。

以下の段落では一般論を述べています。

Quantitative methodologies are a useful tool in safety assurance processes, where the objective is to reduce risk to a quantifiably acceptable level by estimating the rates of occurrence of hazardous events. Standards such as IEC 61508 are based strongly on this principle. Given such an estimate of the probability of safety-related hazards, the risk can in principle be mitigated to an acceptably low level.

定量的方法論は、危険事象の発生率を推定することにより、リスクを定量的に許容できるレベルまで低減することを目的とした安全保証プロセスにおいて有用なツールである。IEC 61508 などの規格は、この原則に強く基づいている。安全に関連するハザードの発生確率をこのように推定すれば、原則としてリスクは許容可能な低レベルにまで軽減することができる。

以下の段落ではシステマティックフォールトを混ぜて議論していますが、混ぜるとわけがわからなくなります。対処する手法が異なるからです。ここではランダムハードウェア故障に絞って議論したほうが良いでしょう。  

However, there are several critical limitations to such methods that must be recognized. While random failures in electronic hardware may be modeled with probabilistic methods, systematic failures (for example in deterministic software) cannot be modeled in this way. This may lead the analyst to under-represent or overlook important systematic failures [8]. There is wide variability in underlying data available for the reliability failure of electronic components, which in turn leads to calculations with a relatively wide range of uncertainty. There is also evidence of a tendency for the analyst to believe in the independence of events which are represented independently in the FTA, while objective observation would find a correlation between events [9]. ISO 26262 takes steps to mitigate these limitations, for example by recognizing the primacy of process adherence in preventing and avoiding systematic faults, which are not generally quantifiable by probabilistic methods. It is important to remember that analyst judgment is a critical factor in the success of a quantified FTA. The analysis is neither a formal proof nor a validation of safety, but merely a structured record of the analyst's best understanding.

しかし、このような方法には、認識しなければならないいくつかの重大な限界がある。電子ハードウェアのランダムな故障は確率論的手法でモデル化することがでるが、系統的な故障(例えば決定論的ソフトウェア)はこの方法ではモデル化できません。このため、解析者は重要なシステマティックな故障を過小評価したり、見落としたりする可能性がありる[8]。電子部品の信頼性故障について利用可能な基礎データには大きなばらつきがあり、その結果、比較的広い範囲の不確実性を伴う計算が行われることになる。また、客観的な観察ではイベント間の相関関係を見つけることができるのに対し、分析者は、FTA で独立して表現されているイベントの独立性を信じる傾向があるという証拠もある[9]。ISO 26262 は、確率論的手法では一般的に定量化できないシステマティックな欠陥の予防と回避において、プロセスの堅持が重要であることを認識するなど、これらの制限を緩和するための措置を講じている。分析者の判断が定量化された FTA を成功させるための重要な要素であることを覚えておくことが重要である。解析は、安全性の正式な証明でも検証でもなく、解析者の最善の理解を構造化した記録に過ぎない。


$\dagger$N. Das and W. Taylor, "Quantified fault tree techniques for calculating hardware fault metrics according to ISO 26262," 2016 IEEE Symposium on Product Compliance Engineering (ISPCE), Anaheim, CA, 2016, pp. 1-8, doi: 10.1109/ISPCE.2016.7492848.


左矢前のブログ 次のブログ右矢

posted by sakurai on September 2, 2020 #307

FTA

PMHF論文das2016$\dagger$の続きです。

FTAの説明と、それによるPMHFの導出の概略を述べています。

FTA is a logical combination of intermediate events and basic events, which can be assembled using AND and OR logical operators to analyze the effects of component faults on system failures. In a safety analysis, the FTA typically begins with a top-level event representing a major hazardous event, and/or the violation of a safety goal or Functional Safety Requirement, as defined in ISO 26262. The analysis is then performed by deducing what conditions or events would lead to the top-level event, and in what logical combination. The method has been in use in industrial settings for several decades (see for example [3], [4], [5]). More recently, the method has been applied to automotive systems [6], [7] and suggested for wider use as an analysis framework. In some cases, the FTA may be qualitative in nature. If probabilities of the underlying lower-level events can be estimated, then an estimate of the probability can be made for the top-level event. The PMHF is just such a quantitative estimation.

FTA は、中間イベントと基本イベントを論理的に組み合わせたもので、AND と OR 論理演算子を使って組み立てることで、コンポーネントの故障がシステムの故障に与える影響を分析することができる。安全解析では、FTAは通常、主要な危険イベントや、ISO 26262で定義されている安全目標や機能安全要件の違反を表すトップレベルのイベントから始まる。次に、どのような条件や事象がトップレベルの事象につながるのか、どのような論理的な組み合わせで行われるのかを推論することで分析が行われる。この手法は、数十年前から産業界で使用されている (例えば [3], [4], [5] を参照)。最近では、この手法が自動車システムに適用され [6], [7]、解析フレームワークとしての幅広い利用が提案されています。いくつかのケースでは、FTA は定性的な性質を持っています。もし、基礎となる下位レベルのイベントの確率が推定できれば、上位レベルのイベントの確率を推定することができます。PMHF はまさにそのような定量的な推定である。

本論文は、初版の規格を別にすればPMHF式とFTAを結び付けた初めての論文で、重要論文です。しかしながら1st editionの範囲に留まっています。1st editionの範囲とは、IFがアンリペアラブルという意味です。従って、冗長サブシステムには用いることができません。


$\dagger$N. Das and W. Taylor, "Quantified fault tree techniques for calculating hardware fault metrics according to ISO 26262," 2016 IEEE Symposium on Product Compliance Engineering (ISPCE), Anaheim, CA, 2016, pp. 1-8, doi: 10.1109/ISPCE.2016.7492848.


左矢前のブログ 次のブログ右矢


ページ: