Posts Issued on July 9, 2019

posted by sakurai on July 9, 2019 #126

さて、前稿平均PUD計算は簡易的に、冗長システムの確率の1/2として求めましたが、厳密には、

例えば全ての部品を二重化しておき、片方が壊れてももう片方がそれを引き継ぐことができる

という、スタンバイシステムについて平均PUD計算する必要があります。常に両方が稼働する冗長(2重化)と異なり、主系がフォールトしたときに初めて従系が稼働するものです。

IF、SM1からなるサブシステムがあり、IF、SM1の両方ともアンリペアラブルだとします。それぞれの故障率は、$\lambda_\text{IF}$及び$\lambda_\text{SM}$とします。上記のように、IFもSM1も$t=0$から同時に動作している冗長系ではなく、時刻$t$において主系であるIFがダウンし、即座にスタンバイ系であるSM1が引き続いて動作するものとします。

すると、車両寿命$T_\text{lifetime}$における稼働度(Availability)は、IFが$T_\text{lifetime}$までにダウンしないか、あるいは、途中の時刻$t$でダウンしたとしても、そこからSM1が$T_\text{lifetime}$までダウンせずに稼働する確率なので、

$$ A_\text{subsystem}(T_\text{lifetime})=\Pr\{\text{IF not failed at }T_\text{lifetime}\}\\ +\int_0^{T_\text{lifetime}}\Pr\{\text{IF fails in }(t + dt]\cap\text{IF not failed at }t\cap\text{SM not failed in }(T_\text{lifetime}-t]\}\\ =R_\text{IF}(T_\text{lifetime})+\int_0^{T_\text{lifetime}}R_\text{SM}(T_\text{lifetime}-t)F_\text{IF}(t)dt\\ =R_\text{IF}(T_\text{lifetime})+\int_0^{T_\text{lifetime}}e^{-\lambda_\text{SM}(T_\text{lifetime}-t)}\lambda_\text{IF}e^{-\lambda_\text{IF}t}dt\\ =R_\text{IF}(T_\text{lifetime})+\lambda_\text{IF}e^{-\lambda_\text{SM}T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-(\lambda_\text{IF}-\lambda_\text{SM})t} dt\\ =R_\text{IF}(T_\text{lifetime})+\lambda_\text{IF}e^{-\lambda_\text{SM}T_\text{lifetime}}\left[\frac{e^{-(\lambda_\text{IF}-\lambda_\text{SM})t}}{-(\lambda_\text{IF}-\lambda_\text{SM})}\right]_0^{T_\text{lifetime}}\\ =R_\text{IF}(T_\text{lifetime})+\lambda_\text{IF}e^{-\lambda_\text{SM}T_\text{lifetime}}\left[\frac{1-e^{-(\lambda_\text{IF}-\lambda_\text{SM})T_\text{lifetime}}}{\lambda_\text{IF}-\lambda_\text{SM}}\right]\\ =R_\text{IF}(T_\text{lifetime})+\frac{\lambda_\text{IF}}{\lambda_\text{IF}-\lambda_\text{SM}}(e^{-\lambda_\text{SM}T_\text{lifetime}}-e^{-\lambda_\text{IF}T_\text{lifetime}})\\ =\img[-1.35em]{/images/withinseminar.png}, \text{ただし、}\lambda_\text{IF}\neq\lambda_\text{SM} \tag{126.1} $$

平均PUDを求めるには不稼働度(Unavailability)の時間平均が知りたいので、$\lambda t\ll 1$の前提で$R(t)=e^{-\lambda t}\approx1-\lambda t+\frac{1}{2}\lambda^2 t^2$と、2次項までMaclaurin展開し、平均PUDを求めると、 $$ \require{cancel} \overline{PUD}=\frac{1}{T_\text{lifetime}}Q_\text{subsystem}(T_\text{lifetime})=\frac{1}{T_\text{lifetime}}\left[1-A_\text{subsystem}(T_\text{lifetime})\right]\\ \approx\frac{1}{\bcancel{T_\text{lifetime}}}\left[\bcancel{1}-(\bcancel{1}-\lambda_\text{IF}\bcancel{T_\text{lifetime}}+\frac{1}{2}{\lambda_\text{IF}}^2 {T_\text{lifetime}}^\bcancel{2})\right]\\ -\frac{1}{\bcancel{T_\text{lifetime}}}\frac{\lambda_\text{IF}}{\lambda_\text{IF}-\lambda_\text{SM}}\left[ (\bcancel{1}-\lambda_\text{SM}\bcancel{T_\text{lifetime}}+\frac{1}{2}{\lambda_\text{SM}}^2 {T_\text{lifetime}}^\bcancel{2})\\ -(\bcancel{1}-\lambda_\text{IF}\bcancel{T_\text{lifetime}}+\frac{1}{2}{\lambda_\text{IF}}^2 {T_\text{lifetime}}^\bcancel{2})\right]\\ =(\lambda_\text{IF}-\frac{1}{2}{\lambda_\text{IF}}^2 T_\text{lifetime})-\frac{\lambda_\text{IF}}{\bcancel{\lambda_\text{IF}-\lambda_\text{SM}}}\left[(\bcancel{\lambda_\text{IF}-\lambda_\text{SM}})-\frac{1}{2}T_\text{lifetime}(\bcancel{\lambda_\text{IF}-\lambda_\text{SM}})(\lambda_\text{IF}+\lambda_\text{SM})\right]\\ =(\bcancel{\lambda_\text{IF}}-\bcancel{\frac{1}{2}{\lambda_\text{IF}}^2 T_\text{lifetime}})-\lambda_\text{IF}\left[\bcancel{1}-\frac{1}{2}T_\text{lifetime}(\bcancel{\lambda_\text{IF}}+\lambda_\text{SM})\right]\\ =\img[-1.35em]{/images/withinseminar.png} \tag{126.2} $$ 以上から、前稿の2重化での簡易計算と完全一致します。


左矢前のブログ 次のブログ右矢