Posts Tagged with "EOTTI"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

EOTTIの考え直し(3)

posted by sakurai on April 21, 2021 #386

前稿において、ようやくSM1にEOTTI制約がある場合についての$M_\text{PMHF}$が求められたので、今回は以前のブログ記事にならい、非冗長におけるEOTTIの制約を求めます。ただし、MPFDIを定めないとEOTTIが定まらないという制約があるので、MPFDIを100H, 10H, 1Hのように振ってみます。

さて、非冗長であることから(385.1)に$K_\text{IF,det}=1$を代入し、 $$ \begin{eqnarray} M_\text{PMHF}&=&(1-\frac{T_\text{eotti}}{T_\text{mpfdi}}K_\mathrm{IF,RF})\lambda_\text{IF}+\frac{T_\text{eotti}}{T_\text{mpfdi}}K_\mathrm{IF,RF}\alpha \end{eqnarray}\tag{386.1} $$ ただし、 $$ \alpha:=\frac{1}{2}\lambda_\mathrm{IF}\lambda_\mathrm{SM}[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}T_\text{mpfdi}] $$ となります。よって、EOTTIの最大値は、 $$ \frac{M_\text{PMHF}-\lambda_\text{IF}}{\alpha-\lambda_\text{IF}}\cdot\frac{T_\text{mpfdi}}{K_\text{IF,RF}}\\ =\frac{M_\text{PMHF}-\lambda_\text{IF}}{\frac{1}{2}\lambda_\mathrm{IF}\lambda_\mathrm{SM}[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}T_\text{mpfdi}]-\lambda_\text{IF}}\cdot\frac{T_\text{mpfdi}}{K_\text{IF,RF}}\\ =\img[-1.35em]{/images/withinseminar.png} \tag{386.2} $$ で求められます。

規格に記述されている数値を入れてみたところ、矛盾が起きました。その理由は規格が誤ったPMHF方程式に基づいているためのようです。従ってEOTTIの最大値を具体的な数値について議論することは断念しました。

弊社ではPMHFに関する論文をRAMS 2023に投稿予定であることから、ブログの一部を一旦非開示(セミナー内でのご紹介と表示)としました。


左矢前のブログ 次のブログ右矢

EOTTIの考え直し(2)

posted by sakurai on April 20, 2021 #385

引き続き(b)~(d)の平均PUD計算

前稿において、

(a) OPR$\rightarrow$SPF

が求められましたが、結果として$K_\text{IF,RF}$に対して$\frac{T_\text{eotti}}{T_\text{mpfdi}}K_\mathrm{IF,RF}$を代入した形となりました。よって、

(b) LAT2$\rightarrow$SPF
(c) LAT2$\rightarrow$DPF
(d) LAT1$\rightarrow$DPF

残りの(b), (c), (d)を同様に求めます。過去記事のPMHF結果式(373.1)において、上記を代入し、 $$ \begin{eqnarray} M_\text{PMHF}&=&\left(1-\frac{T_\text{eotti}}{T_\text{mpfdi}}K_\mathrm{IF,RF}\right)\lambda_\text{IF}+\frac{T_\text{eotti}}{T_\text{mpfdi}}K_\mathrm{IF,RF}\color{red}{K_\text{IF,det}}\alpha+2\frac{T_\text{eotti}}{T_\text{mpfdi}}K_\text{IF,RF}\color{red}{(1-K_\text{IF,det})}\beta\\ &=&\img[-1.35em]{/images/withinseminar.png}\\ \end{eqnarray}\tag{385.1} $$ ただし、 $$ \begin{cases} \begin{eqnarray} \alpha&:=&\frac{1}{2}\lambda_\mathrm{IF}\lambda_\mathrm{SM}[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}T_\text{mpfdi}],\\ \beta&:=&\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{MPF}})T_\text{lifetime}+K_{\mathrm{MPF}}T_\text{mpfdi}],\\ K_{\mathrm{MPF}}&:=&K_{\mathrm{IF,MPF}}+K_{\mathrm{SM,MPF}}-K_{\mathrm{IF,MPF}}K_{\mathrm{SM,MPF}} \end{eqnarray} \end{cases} $$ となります。

EOTTIの詳細なタイミング

以上の議論は、EOTTI時間間隔とMPFDI時間間隔の比に依存すると単純化してきましたが、実際にはIFのフォールトは図385.1のように生起します。

図%%.1
図385.1 フォールト発生から修理まで

詳細に見れば、フォールト発生から修理まではSM1によりVSG抑止されていますが、この時間内にSM1にフォールトが発生するとDPFとなります。今回の議論においては、EOTTIでカバーされる時間内では即時修理される前提でhit率を計算したため、そこに若干の齟齬が出るはずです。

良く考えると、IFの1点フォールトでレイテントとなり、定期検査で修理されて正常に戻る図385.1の動作は、以前のMPF detectedがレイテントであった頃と変わりません。IFでのフォールト生起から検査・修理までの時間間隔においてSM1にフォールトが発生するとDPFとなるためです。従って、この条件でPMHFを求めると、元に戻って(LFMとは矛盾を起こすようにはなるものの)求められたPMHF式に、EOTTIの効果を入れれば良いことになります。

弊社ではPMHFに関する論文をRAMS 2023に投稿予定であることから、ブログの一部を一旦非開示(セミナー内でのご紹介と表示)としました。


左矢前のブログ 次のブログ右矢

EOTTIの考え直し

posted by sakurai on April 19, 2021 #384

OPRSPFの平均PUDの計算

従来はMPF detectedはnon faultyでしたが、今回EOTTIの導入に伴い、SM1の時間制約としてのEOTTI後に、VSG抑止の時間切れとなることからSPFとするように変更しました。従って、MPF detectedといえどもSPF計算に関係してきます。 前稿#369を参照し、OPRからSPFへの平均PUD(66.13)を計算します。

図%%.1
図384.1 OPRSPFの遷移(a)

OPRからSPFへの平均PUDは、 $$ \overline{q_{\mathrm{SPF(a),IFU}}}=\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{SPF\ via\ (a)\ at\ }T_\text{lifetime}\}\tag{384.1} $$ ここで、表368.1より、IF non preventableのupは(2)及び(4)のうちEOTTIでカバーされない分=miss分=(383.1)、の2排他条件であるため、 $$ \begin{eqnarray} (384.1)&=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\left(\mathrm{OPR_\overline{prev}\ at\ }t\cup\mathrm{OPR_\text{prev}\ at\ }t\cap miss\right)\cap\mathrm{IF\ down\ in\ }(t, t+dt]\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{OPR_\overline{prev}\ at\ }t\cap\mathrm{IF\ down\ in\ }(t, t+dt]\}\\ & &+\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\left(\mathrm{OPR_\overline{prev}\ at\ }t\cap miss\right)\cap\mathrm{IF\ down\ in\ }(t, t+dt]\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF\ down\ in\ }(t, t+dt]\ |\ \mathrm{OPR_\overline{prev}\ at\ }t\}\Pr\{\mathrm{OPR_\overline{prev}\ at\ }t\}\\ & &+\frac{\Pr\{miss\}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF\ down\ in\ }(t, t+dt]\ |\ \mathrm{OPR_\text{prev}\ at\ }t\}\Pr\{\mathrm{OPR_\text{prev}\ at\ }t\}\\ \end{eqnarray} \tag{384.2} $$ 前稿#369の(369.5)より、 $$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF\ down\ in\ }(t, t+dt]\ |\ \mathrm{OPR_\overline{prev}\ at\ }t\}\Pr\{\mathrm{OPR_\overline{prev}\ at\ }t\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}(1-K_\mathrm{IF,RF})R_\mathrm{IF}(t)A_\mathrm{SM}(t)\lambda_\mathrm{IF}dt \tag{384.3} $$ さらに、 $$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF\ down\ in\ }(t, t+dt]\ |\ \mathrm{OPR_{prev}\ at\ }t\}\Pr\{\mathrm{OPR_{prev}\ at\ }t\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}K_\mathrm{IF,RF}R_\mathrm{IF}(t)A_\mathrm{SM}(t)\lambda_\mathrm{IF}dt \tag{384.4} $$ は明らかであるから、これらを(384.2)に代入して、 $$ \require{cancel} (384.2)=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\left[(1-\bcancel{K_\text{IF,RF}})+K_\text{IF,RF}\left(\bcancel{1}-\frac{T_\text{eotti}}{T_\text{mpfdi}}\right)\right]R_\mathrm{IF}(t)A_\mathrm{SM}(t)\lambda_\mathrm{IF}dt\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\left(1-\frac{T_\text{eotti}}{T_\text{mpfdi}}K_\text{IF,RF}\right)R_\mathrm{IF}(t)A_\mathrm{SM}(t)\lambda_\mathrm{IF}dt \tag{384.5} $$ よって、(103.6)の結果を用い、$\tau=T_\text{mpfdi}$であるから、 $$ \begin{eqnarray} (384.5)&\approx&\left(1-\frac{T_\text{eotti}}{T_\text{mpfdi}}K_\mathrm{IF,RF}\right)\lambda_\mathrm{IF}-\left(1-\frac{T_\text{eotti}}{T_\text{mpfdi}}K_\mathrm{IF,RF}\right)\alpha\\ &=&\img[-1.35em]{/images/withinseminar.png}\\ & &\text{ただし、} \alpha:=\frac{1}{2}\lambda_\mathrm{IF}\lambda_\mathrm{SM}\left[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}T_\text{mpfdi}\right] \end{eqnarray} \tag{384.6} $$

MPFDIに対してEOTTI分だけSM1のカバレージが減少すると解釈すると、SM1のEOTTIの制約に対して理屈に合っています。

弊社ではPMHFに関する論文をRAMS 2023に投稿予定であることから、ブログの一部を一旦非開示(セミナー内でのご紹介と表示)としました。


左矢前のブログ 次のブログ右矢

EOTTIとは(3)

posted by sakurai on April 15, 2021 #383

EOTTIの問題点2点

以下は、$T_\text{mpfdi}\gt T_\text{eotti}$の場合に限ります。反対に、$T_\text{mpfdi}\le T_\text{eotti}$の場合は必ずEOTTI中に検査・修理が含まれるためSPFとなることはないので、MPF detectedは過去記事のようにup状態となります。

  1. PMHF式の修正が必要
    SM1にVSG抑止の制約時間であるEOTTIが存在する場合は、CTMCの遷移条件が異なってきます。それにより、結果として得られるPMHF方程式が変わってきます。

    CTMC遷移条件が変更⇒平均PUD微分方程式が変更⇒結果PMHF方程式が変更

    図%%.1
    図383.1 CTMC


    図383.1において、IFにフォールトが発生し、かつSM1によりそのフォールトが検出された場合、かつEOTTIが車両寿命以上の場合はVSGが抑止されている期間内に修理されることが前提のため、VSGとはなりません。一方EOTTIが車両寿命未満の場合はVSG抑止がされなくなるため、SPFとなります。つまりSM1によるMPF detectedフォールトについては、カバー範囲においても(a)の遷移が発生します。

  2. MPFDIとEOTTIの性質の違い
    過去記事のように、MPFDIとEOTTIは相反する時間制約であることから、相互に入れ替えることはできません。

    図383.2に$T_\text{mpfdi}\gt T_\text{eotti}$の場合のMPFDIとEOTTIの関係を示します。MPFDIの周期は検出・修理周期です。これを固定し、EOTTIをずらして行くと、(1)~(2)まではEOTTI中に検出・修理は入らないため、この期間はミス期間(長さ=MPFDI-EOTTI)となります。一方、(3)~(4)まではEOTTI中に検出・修理が含まれるので、この期間はヒット期間(長さ=EOTTI)となります。

    図%%.2
    図383.2 ヒットミス判定


    よって、$T_\text{mpfdi}\gt T_\text{eotti}$の場合はミス率、ヒット率は以下のように求められます。 $$ \Pr\{\text{miss}\}=\frac{\text{(1)~(2)までの時間間隔}}{\text{(1)~(4)までの時間間隔}}=\frac{T_\text{mpfdi}-T_\text{eotti}}{T_\text{mpfdi}}=1-\frac{T_\text{eotti}}{T_\text{mpfdi}}\tag{383.1} $$ $$ \Pr\{\text{hit}\}=\frac{\text{(3)~(4)までの時間間隔}}{\text{(1)~(4)までの時間間隔}}=\frac{T_\text{eotti}}{T_\text{mpfdi}}\tag{383.2} $$

弊社ではEOTTIに関する論文をRAMS 2023に投稿予定であることから、ブログの一部を一旦非開示(セミナー内でのご紹介と表示)としました。


左矢前のブログ 次のブログ右矢

EOTTIとは(2)

posted by sakurai on March 31, 2021 #382

そこで、新たにCTMCから考え直します。

図%%.1
図382.1 IFUモデルのCTMC

図382.1の前提として、IFUモデルで考えます。その理由は、SM1はVSG抑止に制約のあるSMであり、冗長構成ではないと考えるほうが自然だからです。

さらに、過去記事のCTMCからLAT1を削除しています。これは、SM1にIF代替機能が無い場合、つまり非冗長の場合はIFのダウンにより直ちにVSGとなるためです。従って、MPF detectedをMPF latentと同一視することはできません。この場合MPF latentはSM1のフォールトによって引き起こされるフォールトのみとなります。

SM1の検出機能によりVSG抑止される場合、$T_\text{service}$と$T_\text{eotti}$の大小関係により、動作が異なってきます。

  1. $T_\text{service}\lt T_\text{eotti}$のとき
    $\img[-1.35em]{/images/withinseminar.png}$
  2. $T_\text{service}\gt T_\text{eotti}$のとき
    $\img[-1.35em]{/images/withinseminar.png}$

弊社ではEOTTIに関する論文をRAMS 2023に投稿予定であることから、ブログの一部を一旦非開示(セミナー内でのご紹介と表示)としました。


左矢前のブログ 次のブログ右矢

EOTTIとは

posted by sakurai on March 29, 2021 #381

EOTTIとは

そもそもEOTTIとは何かを再確認します。過去記事によれば、

EOTTIとは、SM1によりIFのVSGが抑止されていて、かつ、その抑止に時間制約がある場合、その最小時間のことを指します。

とのことです。

MPFDIの性質

ここでMPFDIと比較すると、MPFDIは、レイテントを防止するためのSM、すなわち2nd SMの定期修理時間間隔です。MPFDIがある一定値よりも長いと、修理期間内で発生するフォールトの確率が上昇し、そのためPMHFが目標を超える可能性があります。従って、目標PMHFよりも小さくなる制約条件から、最大(ワースト)MPFDIが求められます。逆に、MPFDI=$\tau$が小なほうがアイテムのダウン確率やPMHFが低く、安全性は高いわけです。

図%%.1
図381.1 MPFDIとPMHFの関係

EOTTの性質I

規格ではEOTTIをMPFDIと同じPMHF式により求めていますが、良く考えるとおかしいです。EOTTIは、VSGを防止するためのSM、すなわち1st SMの抑止期間の最大値です。従って、EOTTIが小ということは制約条件が厳しく、弱いSMであるためPMHFは上昇するはずです。逆に、EOTTIが大なほうがアイテムのダウン確率やPMHFは低く、安全性が高いはずです。

図%%.2
図381.2 EOTTIとPMHFの関係

以上から、MPFDIとEOTTIはPMHFに関して相反する要素であるため、MPFDIとEOTTIを同一視することはできません。

そもそも、PMHF方程式の$\tau$はあくまで2nd SMの定期修理周期なので、$\tau$を1st SMの制約であるEOTTIに入れ替えることはできません。

まとめ

まとめると、

$\img[-1.35em]{/images/withinseminar.png}$

2つの誤りというより、1つめの誤りである1st SMの制約と2nd SMの制約を混同したことから、2つ目の矛盾が引き起こされたと考えます。

弊社ではEOTTIに関する論文をRAMS 2023に投稿予定であることから、ブログの一部を一旦非開示(セミナー内でのご紹介と表示)としました。


左矢前のブログ 次のブログ右矢

EOTTIの再計算(2)

posted by sakurai on March 23, 2021 #380

今回、非冗長系のサブシステムにおけるPMHFの一般式は、(373.2)で求められました。また、検査周期がEOTTIである場合のアイテムのVSG確率の時間平均は、目標PMHF値$M_\text{PMHF}$以下となる必要があります。 $$ M_\text{PMHF}\ge\img[-1.35em]{/images/withinseminar.png} \tag{380.1} $$ よって、(380.1)を用いて、$\tau$を$T_\text{eotti}$とした場合のPMHFに対する不等式を$T_\text{eotti}$について解きます。 $$ T_\text{eotti}\le\frac{M_\text{PMHF}-\left[\lambda_\text{SPF}+\lambda_\text{RF}+\frac{1}{2}\lambda_\text{IF,DPF}\lambda_\text{SM,DPF}(1-K_\text{MPF})T_\text{lifetime}\right]}{\frac{1}{2}\lambda_\text{IF,DPF}\lambda_\text{SM,DPF}K_\text{MPF}}\\ =\frac{M_\text{PMHF}-(\lambda_\text{SPF}+\lambda_\text{RF}+\frac{1}{2}\lambda_\text{IF,DPF}\lambda_\text{SM,DPF,lat}T_\text{lifetime})}{\frac{1}{2}\lambda_\text{IF,DPF}\lambda_\text{SM,DPF,lat}} \tag{380.2} $$ これに対して具体的な数値で計算すると、過去記事の表に基づき、

表380.1
EOTTI ケース1[H] ケース2[H]
(2)式の結果 772 31
(3)式の結果 167 167
前回のEOTTI 2,312 965
今回のEOTTI $\img[-1.35em]{/images/withinseminar.png}$ $\img[-1.35em]{/images/withinseminar.png}$

となり、規格式の$\img[-1.35em]{/images/withinseminar.png}$倍の大きさとなりました。

なお、なぜ規格上、ワーストケースの(3)式の結果と、一般ケースの(2)式の結果の2例の不等式が掲載されているのかは不明です。本来、一般ケースだけで良いはずです。というのは、ワーストケースを満足できなかった場合、これはワーストケースだから無視しても良いというなら、そもそも不要なはずです。守るべき数値目標のひとつだけにすべきです。

さらに不明な点は、規格式によるEOTTIは、表380.1のケース2において、ワーストケースの値167[H]よりも厳しい値31[H]のように、大小が逆転していることです。これは規格のPMHF式が過剰評価のためと思われます。PMHF式が過剰見積もり(保守的)の方向になる場合、EOTTIは過小見積もり(厳しく)となります。PMHF式により計算されたEOTTIがワーストケースのEOTTIよりも厳しくなっていることは、規格のPMHF式が不正確であることを示しています。

弊社ではPMHFに関する論文をRAMS 2022に投稿予定であることから、ブログの一部を一旦非開示(セミナー内でのご紹介と表示)としました。


左矢前のブログ 次のブログ右矢

EOTTIの再計算

posted by sakurai on March 22, 2021 #379

過去記事を参考に、新しく求めたPMHFに対するEOTTIの式を求めます。ISO 26262 2nd editionのPart10の12.3.3.1では、(1)~ (3)の各式が定義されています。ただし(1)は(3)になると書かれています。

EOTTIとは、SM1によりIFのVSGが抑止されていて、かつ、その抑止に時間制約がある場合、その最小時間のことを指します。いかなる修理時間もいかなる制約時間を超えなければ良いため、様々な制約がある場合はその最小時間となります。逆に修理側から見ると、修理時間間隔はその値以下となる必要があります。

従ってEOTTIはMPFDIと似ていて、その時間内に修理する必要があります。MPFDIはその制約が破られるとLFになるのに対して、EOTTIはその制約が破られるとVSGとなる点が異なります。すなわちMPFDIは2nd SMに対する時間制約であり、EOTTIは1st SMに対する時間制約です。

前述のように、EOTTIを最大修理期間とした場合、アイテムのVSG確率の時間平均が目標PMHF値$M_\text{PMHF}$を下回らなければなりません。

最初にワーストケースを考えます。

 1. 既に$t=0$においてIFがダウンしている場合を考えます。そのためSM1はアンリペアラブルとなり、不稼働度(修理を含む)$Q_\text{SM1}(t)$は、不信頼度(修理を含まない)$F_\text{SM1}(t)$となります。よって、 $$ M_\text{PMHF}\ge\frac{1}{T_\text{lifetime}}Q_\text{SM1}(T_\text{eotti})=\frac{1}{T_\text{lifetime}}F_\text{SM1}(T_\text{eotti})=\frac{1}{T_\text{lifetime}}(1-e^{-\lambda_\text{SM1}T_\text{eotti}})\\ \approx\frac{1}{T_\text{lifetime}}\lambda_\text{SM1,DPF}T_\text{eotti}\qquad\ s.t.\ \lambda_\text{SM1,DPF}T_\text{eotti}<<1 $$ となり、この不等式を$T_\text{eotti}$について解けば、図379.1の(3)[Part 10, 12.3.3.1]が得られます。これは$t=0$の時に既にIFがダウンしているSPFに関する式となります。

図%%.1
図379.1 車両寿命間の故障に基づくEOTTIの導出(再掲)

一方、通常はそのような特殊な制約は与えられないため、

 2. 任意の時点でIFがダウンし、そこからEOTTIがスタートすることになります。従って、2nd editionの(不正確な)PMHF式に基づけば、目標PMHF値$M_\text{PMHF}$をVSG確率の時間平均が下回らなければならないので、 $$ M_\text{PMHF}\ge\frac{1}{T_\text{lifetime}}\left[Q_\text{SPF}(T_\text{eotti})+Q_\text{SPF}(T_\text{eotti})\right] $$ EOTTIはDPFにおける1st SMのVSG抑止限界であるので、DPFのみに関係します。右辺に(不正確な)PMHF規格式を用いて書き直せば、 $$ M_\text{PMHF}\ge\lambda_\text{SPF}+\lambda_\text{RF}+0.5\left(\lambda_\text{SM1,DPF,latent}\lambda_\text{IF,DPF}+\lambda_\text{IF,DPF,latent}\lambda_\text{SM1,DPF}\right)T_\text{lifetime}\\ +\left(\lambda_\text{SM1,DPF,detected}\lambda_\text{IF,DPF}+\lambda_\text{IF,DPF,detected}\lambda_\text{SM1,DPF}\right)T_\text{eotti} $$ となり、この不等式を$T_\text{eotti}$について解けば、次の図379.2の(2)[Part 10, 12.3.3.1]が得られます。

図%%.2
図379.2 PMHF式に基づくEOTTIの導出(再掲)


左矢前のブログ 次のブログ右矢

posted by sakurai on January 19, 2021 #346

第5節は、前節で求めたPMHFの評価です。図のレイアウト上、空白が多めになっています。

図%%.1

規格はケース見落としにより、過剰なPMHFの見積もりとなっています。ということは保守的な見積もりであるため、安全側ではありますが、EOTTIとしてはその過剰見積もりが厳しい設計制約として見えてきます。

上図左は弊社による、EOTTIの最大値を示す不等式です。一方、上図右は、2nd editionに掲載されているEOTTIの最大値を示す不等式です。表に示すように、規格自体に含まれている例で計算すると、規格がPMHFを過大に見積もっていることから、EOTTIも過小見積もりとなっています。正しくは965時間で良いのに、規格式では31時間となり、その倍率は31倍ともなります。

結論として、規格に従えば、PMHFが保守的な見積もりであることから、EOTTIに関して31倍も設計が厳しくなります。


左矢前のブログ 次のブログ右矢

posted by sakurai on February 4, 2020 #199

プレスリリースで案内のとおり、去る1月27日から4日間、米国カリフォルニア州パームスプリングスで開催された、RAMS 2020${}^{\dagger 1}$において、PMHF${}^{\dagger 2}$に関する論文を発表しました。論文の題名は"Generic Equations for a Probabilistic Metric for Random Hardware Failures According to ISO 26262"です。邦題は「ISO 26262に準拠したランダムハードウェア故障の確率的メトリクスの一般式」であり、PMHFを正確に評価することを可能にするものです。RAMS 2020は、IEEE RS${}^{\dagger 3}$が主催する、信頼性工学に関する世界最高レベルの国際学会です。

発表の内容は、IF${}^{\dagger 4}$及びSM${}^{\dagger 5}$から構成されるサブシステムにおいて、IFがISO 26262第1版に対応する非修理可能なモデルと、第2版に対応する修理可能なモデルの2つを考案し、それに基づいたPMHF式を導出し、第1版とは一致、第2版とは不一致となることを示しました。次に第2版との不一致について、規格第2版のPMHFの過小評価と、EOTTI${}^{\dagger 6}$の過大評価を計算し、規格第2版は31倍もの過剰な設計制約となっていることを明らかにしたものです。

下の写真の向かって右はRAMS 2020のGeneral ChairであるDr. Julio Pulidoです。

図%%.1
図199.1 RAMS 2020にて

下の写真の左上はColloquim Session ChairであるJess Leszczynskiと、右上はPaper Session ChairであるDongmei Chenと、右下はProgram Committee ChairであるOm Yadavとの写真です。

図%%.2
図199.2 RAMS 2020にて

[追記]
論文の公開場所は、以下のIEEE Xploreです。
https://ieeexplore.ieee.org/document/9153704


${}^{\dagger 1}$RAMS 2020: The 66th Annual Reliability & Maintainability Symposium
${}^{\dagger 2}$PMHF: Probabilistic Metric for random Hardware Failures ⇒用語集
${}^{\dagger 3}$RS: Reliability Society
${}^{\dagger 4}$IF: Intended Functionarity ⇒用語集
${}^{\dagger 5}$SM: Safety Mechanism ⇒用語集
${}^{\dagger 6}$EOTTI: Emergency Operation Tolerance Time ⇒用語集


左矢前のブログ 次のブログ右矢


ページ: