この表に基づき、積分方程式を(a)~(c)まで場合分けして立てます。被積分関数は状態確率×遷移確率(微小確率)で表されます。遷移確率は条件付き確率です。この状態確率のうち
IF関連をグリーン、SM関連項をブルーで表します。また遷移確率をレッドで表します。この色分けは表の色分けとは関係ありません。
(a)からのSPF確率の時間平均は、
$$
\begin{eqnarray}
\overline{q_{\mathrm{SPF(a),IFU}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{SPF\ via\ (a)\ at\ }T_\text{lifetime}\}\\
&=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{OPR_\overline{prev}\ at\ }t\cap\mathrm{IF\ down\ in\ }(t, t+dt]\}\\
&=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\bbox[#ccffcc,2pt]{(1-K_\mathrm{IF,RF})R_\mathrm{IF}(t)}\bbox[#ccffff,2pt]{A_\mathrm{SM}(t)}\bbox[#ffcccc,2pt]{\lambda_\mathrm{IF}dt}\\
&\approx&(1-K_\mathrm{IF,RF})\lambda_\mathrm{IF}-(1-K_\mathrm{IF,RF})\alpha,\\
& &\text{ただし、}
\alpha:=\frac{1}{2}\lambda_\mathrm{IF}\lambda_\mathrm{SM}\left[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}\tau\right]
\end{eqnarray}
\tag{376.1}
$$
(b)からのSPF確率の時間平均は、
$$
\begin{eqnarray}
\overline{q_{\mathrm{SPF(b),IFU}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{SPF\ via\ (b)\ at\ }T_\text{lifetime}\}\\
&=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT2_\overline{prev}\ at\ }t\cap\mathrm{IF\ down\ in\ }(t, t+dt]\}\\
&=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\bbox[#ccffcc,2pt]{(1-K_\mathrm{IF,RF})R_\mathrm{IF}(t)}\bbox[#ccffff,2pt]{Q_\mathrm{SM}(t)}\bbox[#ffcccc,2pt]{\lambda_\mathrm{IF}dt}\\
&\approx&(1-K_{\text{IF,RF}})\alpha,\\
& &ただし、\alpha:=\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}\left[(1-K_{\mathrm{SM,MPF}})T_\text{lifetime}+K_{\mathrm{SM,MPF}}\tau\right]
\end{eqnarray}
\tag{376.2}
$$
(c)からのDPF確率の時間平均は、
$$
\begin{eqnarray}
\overline{q_{\mathrm{DPF(c),IFR}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{DPF\ via\ (c)\ at\ }T_\text{lifetime}\}\\
&=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT2_\text{prev}\ at\ }t\cap\mathrm{IF\ down\ in\ }(t, t+dt]\}\\
&=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\bbox[#ccffcc,2pt]{K_\mathrm{IF,RF}\left[(1-K_\text{IF,MPF})R_\mathrm{IF}(t)+K_\text{IF,MPF}R_\text{IF}(u)\right]}\\
& &\qquad\qquad\cdot\bbox[#ccffff,2pt]{Q_\mathrm{SM}(t)}\bbox[#ffcccc,2pt]{\lambda_\mathrm{IF}dt}\\
&\approx&K_{\text{IF,RF}}\beta,\\
& &ただし、\beta:=\frac{1}{2}\lambda_\mathrm{IF}\lambda_\mathrm{SM}\left[(1-K_\mathrm{MPF})T_\text{lifetime}+K_\mathrm{MPF}\tau\right],\\
& &K_\mathrm{MPF}:=K_\mathrm{IF,MPF}+K_\mathrm{SM,MPF}-K_\mathrm{IF,MPF}K_\mathrm{SM,MPF}
\end{eqnarray}
\tag{376.3}
$$
(d)からのDPF確率の時間平均は、
$$
\begin{eqnarray}
\overline{q_{\mathrm{DPF(d),IFR}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{DPF\ via\ (d)\ at\ }T_\text{lifetime}\}\\
&=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT1\ at\ }t\cap\mathrm{SM\ down\ in\ }(t, t+dt]\}\\
&=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\bbox[#ccffcc,2pt]{K_\mathrm{IF,RF}\left[(1-K_\text{IF,MPF})F_\mathrm{IF}(t)+K_\text{IF,MPF}F_\text{IF}(u)\right]}\\
& &\qquad\qquad\cdot\bbox[#ccffff,2pt]{A_\mathrm{SM}(t)}\bbox[#ffcccc,2pt]{\lambda_\mathrm{SM}dt}\\
&\approx&K_{\text{IF,RF}}\beta,\\
& &ただし、\beta:=\frac{1}{2}\lambda_\mathrm{IF}\lambda_\mathrm{SM}\left[(1-K_\mathrm{MPF})T_\text{lifetime}+K_\mathrm{MPF}\tau\right],\\
& &K_\mathrm{MPF}:=K_\mathrm{IF,MPF}+K_\mathrm{SM,MPF}-K_\mathrm{IF,MPF}K_\mathrm{SM,MPF}
\end{eqnarray}
\tag{376.4}
$$
過去ブログ記事の結果と一致しています。
弊社では、MPF detectedの再考に基づくPMHF式に関する論文をRAMS 2022に投稿予定であることから、ブログの一部を非開示(セミナー内でのご紹介と表示)としました。RAMS 2022で論文が採択・発表された後(2022年2月頃)に公開予定です。
前のブログ
次のブログ