Posts Tagged with "2nd Edition"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

規格第2版のPMHF式の疑問(11)

posted by sakurai on May 12, 2022 #475

パターン2

続いてパターン2です。弊社のやり方はCTMCの原理を用い、時刻$t$におけるDPF確率密度を求め、$0$から$T_\text{lifetime}$まで積分するというものです。

  • Pattern 2: SM1⇒IFの順にフォールトが発生し、SM1のフォールトは、SM2によって緩和され通知される。フォールトの暴露時間は、運転手が修理のために車両を持ち込むのに必要な予想される時間。

これはSM1のフォールトが2nd SMの定期周期$T_\text{service}$により検査され、検出割合は$K_\text{SM,DPF}$でありその全量が修理されるパターンです。時刻$t$までに最初のSM1のフォールトが起き、それ以降$t'(>=t)$がVSGとなる2つ目のIFのフォールトが起きた時刻とします。

図%%.1
図475.1 2nd editionパターン2マルコフ図

同様に、IFのフォールトに関する$t$から$t+\delta t$までのDPF確率密度を求めます。次にサブシステムについて、DPF VSGとなる確率密度を0から$T_\text{lifetime}$まで積分します。

まず、検出される部分のSM1は周期的に修理されるため、SM1の$LAT2$での状態確率は、$u\equiv t\bmod T_\text{service}$とすれば、 $$ \Pr\{\text{SM1(det) in }LAT2\}=\Pr\{\text{SM1 down at }u\cap\text{SM1 detected}\}\\ =K_\text{SM,DPF}F_\text{SM}(u) \tag{475.1} $$

次にIFの$LAT2$での状態確率は、 $$ \Pr\{\text{IF in }LAT2\}=\Pr\{\text{IF up at }t\cap\text{IF prevented}\}\\ =\Pr\{\text{IF up at }t\}\Pr\{\text{IF prevented}\} =K_\text{IF,DPF}R_\text{IF}(t) \tag{475.2} $$

$LAT2$から$DPF1$への微小時間間隔$\delta t$での遷移確率は、IFがフォールトによりDPFとなる場合であり、 $$ d\!\Pr\{\text{IF down in }(t, t+\delta t] | \text{IF up at }t\}=\lambda_\text{IF}\delta t \tag{475.3} $$ 従って、状態確率(475.2)と遷移確率(475.3)の積をとりIFの$(t,t+\delta t]$における確率密度を求めれば、 $$ d\!\Pr\{\text{IF in }LAT2\text{ at }t\cap\text{IF fails in }(t, t+\delta t]\}\\ =d\!\Pr\{\text{IF up at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\Pr\{\text{IF up at }t\}\Pr\{\text{IF prevented}\}d\!\Pr\{\text{IF down in }(t, t+\delta t] | \text{IF up at }t\}\\ =K_\text{IF,DPF}R_\text{IF}(t)\lambda_\text{IF}\delta t=K_\text{IF,DPF}f_\text{IF}(t)\delta t \tag{475.4} $$

IFとSM1にはフォールトの生起について独立であるため、各々の確率はかけることができます。よって、 IFの項(475.4)とSM1の項(475.1)の積をとり、$0$から$T_\text{lifetime}$まで積分して時間平均をとると、 $$ M_\text{PMHF,P2}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}d\!\Pr\{\text{LAT2 at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}d\!\Pr\{\text{IF up at }t\cap\text{SM1 down at }u\cap\text{SM1 detected}\\ \cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\text{SM1 down at }u\cap\text{SM1 detected}\}\\ \cdot d\!\Pr\{\text{IF up at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}K_\text{SM,DPF}F_\text{SM}(u)K_\text{IF,DPF}f_\text{IF}(t)dt\\ \approx\frac{1}{2}K_\text{IF,DPF}K_\text{SM,DPF}\lambda_\text{IF}\lambda_\text{SM}T_\text{service}\\ =\frac{1}{2}\lambda_\text{SM,DPF,det}\lambda_\text{IF,DPF}T_\text{service} \tag{475.5} $$ なお、式変形中に弊社積分公式を使用しています。

これは図104.2の初版PMHF式(パターン1, 2のみ)の、DPFにおけるパターン2に相当する部分と(IF⇒m, $\tau_\text{SM}$⇒$T_\text{service}$と読み替えることにより)正確に一致します。

図%%.1
図475.2 1st edition規格第1式

規格第2版の式は、このパターン2がおかしく、SM1の周期的修理性を考慮に入れていません。2番目のIFのフォールトの露出時間こそ、$t$から$t+T_\text{service}$となっているものの、SM1が0から$t$までの期間において最初のフォールトとなり、SM1が周期的に修理される効果が入っていないため、結果式は誤っています。


左矢前のブログ 次のブログ右矢

規格第2版のPMHF式の疑問(10)

posted by sakurai on May 6, 2022 #474

「ISO 26262第2版解説書」(日本規格協会)のPMHF式と別の方法ですが、弊社の方法で計算し直します。弊社のやり方はCTMCの原理を用い、時刻$t$におけるDPF確率密度を求め、$0$から$T_\text{lifetime}$まで積分するというものです。

パターン1

  • Pattern 1: SM1⇒IFの順にフォールトが発生し、SM1のフォールトはSM2によって緩和されるが通知されない、または緩和されない。フォールトの暴露時間は、最悪の場合の暴露時間である車両寿命となる。

パターン1は、SM1のフォールトが2nd SM(SM2)で検出されないため、SM1のフォールト全体に対するパターン1の割合は$1-K_\text{SM,DPF}$となり、マルコフ図は以下のようになります。時刻パラメータ$t$までに最初のSMのフォールトが起き、$t'(\approx t)$がVSGとなる2つ目のIFのフォールトが起きた時刻とします。

図%%.1
図474.1 2nd editionパターン1マルコフ図

PMHFの求め方は、IFのフォールトに関する$t$から$t+\delta t$までのDPF確率密度を求めます。次にサブシステムについて、DPF VSGとなる確率密度を0から$T_\text{lifetime}$まで積分します。

まず、検出されない部分のSM1の$LAT2$での状態確率は、 $$ \Pr\{\text{SM1(undet) in }LAT2\}=\Pr\{\text{SM1 down at }t\cap\text{SM1 not detected}\}\\ =(1-K_\text{SM,DPF})F_\text{SM}(t) \tag{474.1} $$ 次にIFの$LAT2$での状態確率は、 $$ \Pr\{\text{IF in }LAT2\}=\Pr\{\text{IF up at }t\cap\text{IF prevented}\}\\ =\Pr\{\text{IF up at }t\}\Pr\{\text{IF prevented}\} =K_\text{IF,DPF}R_\text{IF}(t) \tag{474.2} $$

$LAT2$から$DPF1$への微小時間間隔$\delta t$での遷移確率は、IFがフォールトによりDPFとなる場合であり、

$$ d\!\Pr\{\text{IF down in }(t, t+\delta t] | \text{IF up at }t\}=\lambda_\text{IF}\delta t \tag{474.3} $$

従って、状態確率(474.2)と遷移確率(474.3)の積をとりIFの$(t, t+\delta t]$における確率密度を求めれば、 $$ d\!\Pr\{\text{IF in }LAT2\text{ at }t\cap\text{IF fails in }(t, t+\delta t]\}\\ =d\!\Pr\{\text{IF up at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\Pr\{\text{IF up at }t\}\Pr\{\text{IF prevented}\}d\!\Pr\{\text{IF down in }(t, t+\delta t] | \text{IF up at }t\}\\ =K_\text{IF,DPF}R_\text{IF}(t)\lambda_\text{IF}\delta t=K_\text{IF,DPF}f_\text{IF}(t)\delta t \tag{474.4} $$

IFとSM1にはフォールトの生起について独立であるため、各々の確率はかけることができます。よって、 IFの項(474.4)とSM1の項(474.1)の積をとり、$0$から$T_\text{lifetime}$まで積分して時間平均をとると、 $$ M_\text{PMHF,P1}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}d\!\Pr\{\text{LAT2 at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}d\!\Pr\{\text{IF up at }t\cap\text{SM1 down at }t\cap\text{SM1 not detected}\\ \cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\text{SM1 down at }t\cap\text{SM1 not detected}\}\\ \cdot d\!\Pr\{\text{IF up at }t\cap\text{IF prevented}\cap\text{IF fails in }(t, t+\delta t]\}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}(1-K_\text{SM,DPF})F_\text{SM}(t)K_\text{IF,DPF}f_\text{IF}(t)dt\\ \approx\frac{1}{2}K_\text{IF,DPF}(1-K_\text{SM,DPF})\lambda_\text{IF}\lambda_\text{SM}T_\text{lifetime}\\ =\frac{1}{2}\lambda_\text{SM,DPF,lat}\lambda_\text{IF,DPF}T_\text{lifetime} \tag{474.5} $$ なお、式変形中に弊社積分公式を使用しています。

これは図104.2の初版PMHF式(パターン1, 2のみ)の、DPFにおけるパターン1に相当する部分と(IF⇒mと読み替えることにより)正確に一致します。

図%%.1
図474.1 1st edition規格第1式

このようにCTMCを用いて、時刻$t$におけるDPF確率密度を0から車両寿命まで積分する方法のほうが、ずっと簡単でわかりやすいです。


左矢前のブログ 次のブログ右矢

規格第2版のPMHF式の疑問(9)

posted by sakurai on April 14, 2022 #473

パターン3, 4

パターン3, 4は計算をするまでもなく、IFとSMの修理性を逆にすれば結果は明らかで、パターン3は1から、パターン4は2から求められます。ただし、パターン1と異なり、パターン3にはSM1によって緩和されない場合は含まないと書かれています。言うまでも無く、IFのフォールトがSM1によって緩和されない場合はRFとなり、DPFとならないためです。

  • Pattern 3: IF⇒SM1の順にフォールトが発生し、IFのフォールトはSM1によって緩和されるが通知されない。フォールトの暴露時間は、最悪の場合の暴露時間である車両寿命となる。
  • Pattern 4: IF⇒SM1の順にフォールトが発生し、IFのフォールトは、SM1によって緩和され通知される。フォールトの暴露時間は、運転手が修理のために車両を持ち込むのに必要な予想される時間。

パターン3及び4の、計算結果式のみを以下に示します。 $$ M_\text{PMHF,P3} =\frac{1}{2}\lambda_\text{IF,DPF,lat}\lambda_\text{SM,DPF}T_\text{lifetime} \tag{473.1} $$ $$ M_\text{PMHF,P4} =\frac{1}{2}\lambda_\text{IF,DPF,det}\lambda_\text{SM,DPF}T_\text{service} \tag{473.2} $$

結論

弊社での計算結果、規格第2版PMHF式はパターン1, 3は結果は正しく(修理性の前提は誤っていますが)、パターン2, 4は前提も結果も誤っていることが確認できました。 図473.1に2nd editionの式を示します。

図%%.1
図473.1 2nd Edition PMHF式

まとめとして以下にパターン1~4として(470.2), (472.2), (473.1), (473.2)の総和を示します。 $$ \begin{eqnarray} M_\text{PMHF,DPF} &=&\frac{1}{2}\lambda_\text{SM,DPF,lat}\lambda_\text{IF,DPF}T_\text{lifetime}\qquad\qquad\text{Pattern 1}\\ &+&\frac{1}{2}\lambda_\text{SM,DPF,det}\lambda_\text{IF,DPF}T_\text{service}\qquad\qquad\text{Pattern 2}\\ &+&\frac{1}{2}\lambda_\text{IF,DPF,lat}\lambda_\text{SM,DPF}T_\text{lifetime}\qquad\qquad\text{Pattern 3}\\ &+&\frac{1}{2}\lambda_\text{IF,DPF,det}\lambda_\text{SM,DPF}T_\text{service}\qquad\qquad\text{Pattern 4} \end{eqnarray} \tag{473.3} $$

ただし、両方ともIFまたはSMの片方が非修理系という誤った(?)前提に立っている式となります。本来の2nd editionの式は、IFもSMも修理系であると考えます。


左矢前のブログ 次のブログ右矢

規格第2版のPMHF式の疑問(8)

posted by sakurai on April 12, 2022 #472

パターン2

続いてパターン2です。前稿の続きです。

  • Pattern 2: SM1⇒IFの順にフォールトが発生し、SM1のフォールトは、SM2によって緩和され通知される。フォールトの暴露時間は、運転手が修理のために車両を持ち込むのに必要な予想される時間。

これはSM1のフォールトが2nd SMの定期周期$T_\text{service}$により検査され、検出割合は$K_\text{SM,DPF}$でありその全量が修理されるパターンです。時刻パラメータ$t$が最初のSMのフォールトが起きた時刻、$t'$がVSGとなる2つ目のIFのフォールトが起きた時刻とします。

図%%.1
図472.1 2nd editionパターン2マルコフ図

まずIFについては前稿と同様です。IFの$LAT2$での状態確率は、 $$ \Pr\{\text{IF in }LAT2\}=\Pr\{\text{IF up at }t\cap\text{VSG of IF prevented}\}=K_\text{IF,DPF}R_\text{IF}(t) \tag{472.1} $$ $LAT2$から$DPF1$への微小時間での遷移確率は、IFがDPFする場合であり、 $$ d\!\Pr\{\text{IF down in }(t, t+dt] | \text{IF up at }t\cap\text{VSG of IF prevented}\}=\lambda_\text{IF}dt \tag{472.2} $$

規格のとおりIFの確率を求めるとIFは時刻$0$から$t$まではフォールトせず、かつ、IFに関する$t'$の時のDPF確率密度を$t$から$t+T_\text{service}$まで積分し、$t$で表します。$t$から$t+T_\text{service}$までの理由は、必ず$T_\text{service}$間に検査・修理が入るので、露出時間の最大は上記のとおり、$T_\text{service}$となるためです。

実はここに誤りがあり、期間を$t$から$t+T_\text{service}$とすると、SM1⇒IFの順のフォールトだけでなく、その逆順のフォールトも含まれます。

その理由は、パターン2は検出可能部分のSM1のフォールトなので、期間間隔$T_\text{service}$内にDPF、すなわち1つめのSM1のフォールトと2つめのIFのフォールトが両方共起きる必要があります。図472.1の$OPR$から$LAT2$、さらに$LAT2$から$DPF$までを1回の間隔$T_\text{service}$内で遷移する必要があります。

また、その順序もSM1⇒IFと決まっています。SM1のフォールトが起きた時のIFのフォールト生起確率という条件付き確率であれば良いのですが、そうではなくIFとSM1のフォールト確率は独立とするならば、期間間隔$T_\text{service}$を考えるとSM1⇒IFだけでなくIF⇒SM1も含まれてしまいます。従って、半分の期間間隔$\frac{1}{2}T_\text{service}$を考えるか、または期間間隔$T_\text{service}$での確率を求めて0.5をかけるのが正解です。従って後者をとれば、 $$ \Pr\{\text{IF fails last in }[t, t+T_\text{service}])=\frac{1}{2}\Pr\{\text{IF down in }[t, t+T_\text{service}]) $$

従って、(472.1)、(472.2)から、 $$ \Pr\{(\text{IF not fail in }[0, t)\cap\text{VSG of IF prevented})\cap (\text{IF fails last in }[t, t+T_\text{service}])\}\\ =\Pr\{(\text{IF up at }t\cap\text{VSG of IF prevented})\cap (\text{IF fails last in }[t, t+T_\text{service}])\}\\ =K_\text{IF,DPF}\Pr\{\text{IF fails last in }[t, t+T_\text{service}]\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{t+T_\text{service}}d\!\Pr\{\text{IF up at }t'\cap\text{IF down in }[t', t'+dt')\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{t+T_\text{service}}\Pr\{\text{IF up at }t'\}d\!\Pr\{\text{IF down in }[t', t'+dt')\ |\ \text{IF up at }t'\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{t+T_\text{service}}R_\text{IF}(t')\lambda_\text{IF}dt'=K_\text{IF,DPF}\int_t^{t+T_\text{service}}f_\text{IF}(t')dt'\\ =\frac{1}{2}K_\text{IF,DPF}\left[F_\text{IF}(t')\right]^{t+T_\text{service}}_t=K_\text{IF,DPF}\left[F_\text{IF}(t+T_\text{service})-F_\text{IF}(t)\right]\\ =\frac{1}{2}K_\text{IF,DPF}F_\text{IF}(T_\text{service})\approx\frac{1}{2}K_\text{IF,DPF}\lambda_\text{IF}T_\text{service} \tag{472.3} $$ ここで、IFはunrepairableであり、時刻$t$で最初のフォールトが起きるため、$F_\text{IF}(t)=0$を用いています。

次に、SMの$OPR$での状態確率は、$u\equiv t\bmod T_\text{service}$とすれば、 $$ \Pr\{\text{SM in }OPR\}=\Pr\{\text{SM is up at }u\}=R_\text{SM}(u) \tag{472.4} $$

$OPR$から$LAT2$への微小時間での遷移確率は、SMがフォールトする場合であり、 $$ d\!\Pr\{\text{SM down in }(u, u+du] | \text{SM is up at }u\}=K_\text{SM,DPF}\lambda_\text{SM}du \tag{472.5} $$

次にIFとSMのフォールトは独立事象であるため、IFの確率とSMの確率の積をDPF確率として、$0$から$T_\text{lifetime}$まで積分するがSMの確率は周期$T_\text{service}$でゼロとなるため、$T_\text{lifetime}$中には$n\equiv\frac{T_\text{lifetime}}{T_\text{service}}$回存在します。従って(472.3)~(472.5)を用いて、 $$ \require{cancel} M_\text{PMHF,P2}=\frac{1}{\bcancel{T_\text{lifetime}}}\frac{\bcancel{T_\text{lifetime}}}{\bcancel{T_\text{service}}}\int_0^{T_\text{service}}K_\text{SM,DPF}R_\text{SM}(u)\lambda_\text{SM}\frac{1}{2}K_\text{IF,DPF}\lambda_\text{IF}\bcancel{T_\text{service}}du\\ =\frac{1}{2}K_\text{SM,DPF}K_\text{IF,DPF}\lambda_\text{IF}\int_0^{T_\text{service}}f_\text{SM}(u)du\\ \approx\frac{1}{2}K_\text{IF,DPF}K_\text{SM,DPF}\lambda_\text{IF}\lambda_\text{SM}T_\text{service}=\frac{1}{2}\lambda_\text{SM,DPF,det}\lambda_\text{IF,DPF}T_\text{service} \tag{472.6} $$

これは図104.2の初版PMHF式(パターン1, 2のみ)の、DPFにおけるパターン2に相当する部分と(IF⇒m, $\tau_\text{SM}$⇒$T_\text{service}$と読み替えることにより)正確に一致します。

図%%.1
図472.2 1st edition規格第1式


左矢前のブログ 次のブログ右矢

posted by sakurai on April 11, 2022 #471

前稿において、規格第2版のやり方に従ってPMHF計算をすると、新たに以下の2つの公式が必要になるので、公式の導出を示します。近似のポリシーは$\lambda$の2乗までを残すものとします。

No.1

$$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}f_\text{SM}(t)f_\text{IF}(t)dt=\lambda_\text{SM}\lambda_\text{IF} \tag{471.1} $$ (471.1)に$f_\text{SM}(t)=\lambda_\text{SM}e^{-\lambda_\text{SM}t}$及び、$f_\text{IF}(t)=\lambda_\text{IF}e^{-\lambda_\text{IF}t}$を用いて、 $$ \require{cancel} \text{L.H.S of }(471.1)=\frac{\lambda_\text{SM}\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-(\lambda_\text{SM}+\lambda_\text{IF})t}dt=\frac{\lambda_\text{SM}\lambda_\text{IF}}{T_\text{lifetime}}\left[\frac{1}{\lambda_\text{IF}+\lambda_\text{SM}}e^{-(\lambda_\text{IF}+\lambda_\text{SM})t}\right]^0_{T_\text{lifetime}}\\ =\frac{\lambda_\text{SM}\lambda_\text{IF}}{T_\text{lifetime}(\lambda_\text{IF}+\lambda_\text{SM})}\left(1-e^{-(\lambda_\text{IF}+\lambda_\text{SM})T_\text{lifetime}}\right)\approx\frac{\lambda_\text{SM}\lambda_\text{IF}}{\bcancel{T_\text{lifetime}}\bcancel{(\lambda_\text{IF}+\lambda_\text{SM})}}\bcancel{(\lambda_\text{IF}+\lambda_\text{SM})}\bcancel{T_\text{lifetime}} $$

No.2

$$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}f_\text{SM}(t)R_\text{IF}(t)F_\text{IF}(t)dt=\frac{1}{2}\lambda_\text{SM}\lambda_\text{IF}T_\text{lifetime} \tag{471.2} $$ 同様に、 $$ \text{L.H.S of }(471.2)=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\lambda_\text{SM}e^{-\lambda_\text{SM}t}e^{-\lambda_\text{IF}t}(1-e^{-\lambda_\text{IF}t})dt\\ =\frac{\lambda_\text{SM}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-(\lambda_\text{SM}+\lambda_\text{IF})t}dt-\frac{\lambda_\text{SM}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-(\lambda_\text{SM}+2\lambda_\text{IF})t}dt\\ =\frac{\lambda_\text{SM}}{T_\text{lifetime}}\left[\frac{e^{-(\lambda_\text{SM}+\lambda_\text{IF})t}}{\lambda_\text{SM}+\lambda_\text{IF}}\right]^0_{T_\text{lifetime}}-\frac{\lambda_\text{SM}}{T_\text{lifetime}}\left[\frac{e^{-(\lambda_\text{SM}+2\lambda_\text{IF})t}}{\lambda_\text{SM}+2\lambda_\text{IF}}\right]^0_{T_\text{lifetime}}\\ =\frac{\lambda_\text{SM}}{T_\text{lifetime}(\lambda_\text{SM}+\lambda_\text{IF})}\left(1-e^{-(\lambda_\text{SM}+\lambda_\text{IF})T_\text{lifetime}}\right)-\frac{\lambda_\text{SM}}{T_\text{lifetime}(\lambda_\text{SM}+2\lambda_\text{IF})}\left(1-e^{-(\lambda_\text{SM}+2\lambda_\text{IF})T_\text{lifetime}}\right)\\ \approx\frac{\lambda_\text{SM}}{\bcancel{T_\text{lifetime}}\bcancel{(\lambda_\text{SM}+\lambda_\text{IF})}}\left(\bcancel{(\lambda_\text{SM}+\lambda_\text{IF})}\bcancel{T_\text{lifetime}}-\frac{1}{2}(\lambda_\text{SM}+\lambda_\text{IF})^\bcancel{2} T_\text{lifetime}^\bcancel{2}\right)\\ -\frac{\lambda_\text{SM}}{\bcancel{T_\text{lifetime}}\bcancel{(\lambda_\text{SM}+2\lambda_\text{IF})}}\left(\bcancel{(\lambda_\text{SM}+2\lambda_\text{IF})}\bcancel{T_\text{lifetime}}-\frac{1}{2}(\lambda_\text{SM}+2\lambda_\text{IF})^\bcancel{2} T_\text{lifetime}^\bcancel{2}\right)\\ =\lambda_\text{SM}\left(\bcancel{1}-\frac{1}{2}(\bcancel{\lambda_\text{SM}}+\bcancel{\lambda_\text{IF}})T_\text{lifetime}-\bcancel{1}+\frac{1}{2}(\bcancel{\lambda_\text{SM}}+\bcancel{2}\lambda_\text{IF})T_\text{lifetime}\right)=\frac{1}{2}\lambda_\text{IF}\lambda_\text{SM}T_\text{lifetime} $$ No.1, 2から、以下のような簡便公式が得られます。

$$ \int_0^{T_\text{lifetime}}f(t)dt\approx\lambda\int_0^{T_\text{lifetime}}dt,\ \ \int_0^{T_\text{lifetime}}R(t)dt\approx\int_0^{T_\text{lifetime}}dt $$


左矢前のブログ 次のブログ右矢

規格第2版のPMHF式の疑問(7)

posted by sakurai on April 9, 2022 #470

「ISO 26262第2版解説書」(日本規格協会)のPMHF式の解読を行います。この記事の続きです。

パターン1

パターン1を規格に従って計算します。

  • Pattern 1: SM1⇒IFの順にフォールトが発生し、SM1のフォールトはSM2によって緩和されるが通知されない、または緩和されない。フォールトの暴露時間は、最悪の場合の暴露時間である車両寿命となる。

規格にはマルコフ図が記載されていないので推測すると、パターン1は、SM1のフォールトが2nd SM(SM2)で検出されないため、SM1のフォールト全体に対するパターン1の割合は$1-K_\text{SM,DPF}$となり、マルコフ図は以下のようになります。時刻パラメータ$t$が最初のSMのフォールトが起きた時刻、$t'$がVSGとなる2つ目のIFのフォールトが起きた時刻とします。

図%%.1
図470.1 2nd editionパターン1マルコフ図

ただし、規格によるPMHFの求め方はマルコフ連鎖は単純には使用していないようです。

規格によるPMHFの求め方は、後に起きるIFのフォールトに関する$t'$の時の確率密度を$t$から$T_\text{lifetime}$まで積分し$t$で表します。$t$まではIFはフォールトしない場合です。次に$t$について、先に起きるSMのフォールトが、DPF VSGとなる確率密度を0から$T_\text{lifetime}$まで積分します。

通常の求め方は、先に起きるフォールトによる状態確率×後に起きるフォールトによる遷移確率を無限に足し合わせたものとなります。規格では逆に、後に起きるフォールトによる状態確率×先に起きるフォールトによる遷移確率を無限に足し合わせたものとしていますが、これが正しいかどうかは判断つきません。

まず、IFの$LAT2$での状態確率は、 $$ \Pr\{\text{IF in }LAT2\}=\Pr\{\text{IF up at }t\cap\text{VSG of IF prevented}\}=K_\text{IF,DPF}R_\text{IF}(t) \tag{470.1} $$ $LAT2$から$DPF1$への微小時間での遷移確率は、IFがDPFする場合であり、 $$ d\!\Pr\{\text{IF down in }(t, t+dt] | \text{IF up at }t\cap\text{VSG of IF prevented}\}=\lambda_\text{IF}dt \tag{470.2} $$

規格のとおりIFの確率を求めるには、IFは時刻$0$から$t$まではDPFフォールトせず、かつ、$t$から$T_\text{lifetime}$までにDPFフォールトする確率となります。

従って、(470.1)、(470.2)から、 $$ \Pr\{(\text{IF not fail in }[0, t)\cap\text{VSG of IF prevented})\cap (\text{IF fails last in }[t, T_\text{lifetime}])\}\\ =\Pr\{(\text{IF up at }t\cap\text{VSG of IF prevented})\cap(\text{IF fails last in }[t, T_\text{lifetime}])\}\\ =K_\text{IF,DPF}\Pr\{\text{IF fails last in }[t, T_\text{lifetime}]\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{T_\text{lifetime}}d\!\Pr\{\text{IF up at }t'\cap \text{IF down in }[t', t'+dt')\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{T_\text{lifetime}}\Pr\{\text{IF up at }t'\}d\!\Pr\{\text{IF down in }[t', t'+dt')\ |\ \text{IF up at }t'\}\\ =\frac{1}{2}K_\text{IF,DPF}\int_t^{T_\text{lifetime}}R_\text{IF}(t')\lambda_\text{IF}dt'=K_\text{IF,DPF}\int_t^{T_\text{lifetime}}f_\text{IF}(t')dt'\\ =\frac{1}{2}K_\text{IF,DPF}\left[F_\text{IF}(t')\right]^{T_\text{lifetime}}_t=K_\text{IF,DPF}\left[F_\text{IF}(T_\text{lifetime})-F_\text{IF}(t)\right]\\ =\frac{1}{2}K_\text{IF,DPF}F_\text{IF}(T_\text{lifetime})\approx\frac{1}{2}K_\text{IF,DPF}\lambda_\text{IF}T_\text{lifetime} \tag{470.3} $$

次にSMの$OPR$での状態確率は、 $$ \Pr\{\text{SM in }OPR\}=\Pr\{\text{SM is up at }t\}=R_\text{SM}(t) \tag{470.4} $$ $OPR$から$LAT2$への微小時間での遷移確率は、SMがフォールトする場合であり、 $$ d\!\Pr\{\text{SM down in }(t, t+dt] | \text{SM is up at }t\}=(1-K_\text{SM,DPF})\lambda_\text{SM}dt \tag{470.5} $$

IFの項とSMの項を$0$から$T_\text{lifetime}$まで積分し時間平均すると、(470.3)~(470.5)を用いて、 $$ \require{cancel} M_\text{PMHF,P1}\approx\frac{1}{\bcancel{T_\text{lifetime}}}\int_0^{T_\text{lifetime}}(1-K_\text{SM,DPF})R_\text{SM}(t)\lambda_\text{SM}\frac{1}{2}K_\text{IF,DPF}\lambda_\text{IF}\bcancel{T_\text{lifetime}}dt\\\ =\frac{1}{2}(1-K_\text{SM,DPF})K_\text{IF,DPF}\lambda_\text{IF}\int_0^{T_\text{lifetime}}f_\text{SM}(t)dt\\ \approx\frac{1}{2}K_\text{IF,DPF}(1-K_\text{SM,DPF})\lambda_\text{IF}\lambda_\text{SM}T_\text{lifetime}=\frac{1}{2}\lambda_\text{SM,DPF,lat}\lambda_\text{IF,DPF}T_\text{lifetime} \tag{470.6} $$

これは図104.2の初版PMHF式(パターン1, 2のみ)の、DPFにおけるパターン1に相当する部分と(IF⇒mと読み替えることにより)正確に一致します。

図%%.1
図470.1 1st edition規格第1式


左矢前のブログ 次のブログ右矢

posted by sakurai on November 17, 2020 #335

Pattern 3と4

Pattern 3と4は、Pattern 1と2のIFとSM1を入れ替えた形になっています。ただし、条件は微妙に異なります。

  • Pattern 3: IF⇒SM1の順にフォールトが発生し、IFのフォールトはSM1によって緩和されるが通知されない。フォールトの暴露時間は、最悪の場合の暴露時間である車両寿命となる。
  • Pattern 4: IF⇒SM1の順にフォールトが発生し、IFのフォールトは、SM1によって緩和され通知される。フォールトの暴露時間は、運転手が修理のために車両を持ち込むのに必要な予想される時間。

このように、Pattern 3も4も最初にIFにフォールトが発生し、引き続き、SM1にフォールトが発生する場合、つまりIF⇒SM1のDPFの状況を表しています。

Pattern 3と4の条件

Pattern 3と4の条件を論理式で書いてみます。まず、Pattern 3の条件であるLFを増加する条件は、2nd SMであるSM1によるIFのLFの $$ 緩和\cap \overline{通知} $$ であり、Pattern 4の条件であるLFを減少する条件は、2nd SMであるSM1によるIFのLFの $$ 緩和\cap通知 $$ です。全てをつくしていないのは、言うまでもなく、IFのフォールトが緩和されなければVSGとなるためです。Pattern 3及び4の余事象は、 $$ \overline{\left(緩和\cap\overline{通知}\right)\cup\left(緩和\cap通知\right)}=\overline{緩和} $$ であり、この場合はVSGとなり、つまりフォールトはRFとなるのでLFになりません。逆に言えば、IFのフォールトがLFとなるのは、SM1によりVSGから緩和されるときとなります。


左矢前のブログ 次のブログ右矢

posted by sakurai on November 16, 2020 #334

Pattern 1と2

式の右側にPattern 1から4まで番号が振られていますが、以前の記事で解説した場合分けに対応しています。最初にPattern 1と2を見てみます。

  • Pattern 1: SM1⇒IFの順にフォールトが発生し、SM1のフォールトはSM2によって緩和されるが通知されない、または緩和されない。フォールトの暴露時間は、最悪の場合の暴露時間である車両寿命となる。
  • Pattern 2: SM1⇒IFの順にフォールトが発生し、SM1のフォールトは、SM2によって緩和され通知される。フォールトの暴露時間は、運転手が修理のために車両を持ち込むのに必要な予想される時間。

このように、Pattern 1も2も最初にSM1にフォールトが発生し、引き続き、IFにフォールトが発生する場合、つまりSM1⇒IFのDPFの状況を表しています。

暴露時間

DPFが起きる可能性のある期間は、Pattern 1と2で異なり、Pattern 1では車両寿命$T_\text{lifetime}$、Pattern 2では運転手が修理のために車両を持ち込む時間$T_\text{service}$です。この期間のことを、規格では暴露時間と呼んでいます。どうして暴露時間と呼ばれるかと言えば、本来、安全機構が意図機能を保護しているはずですが、安全機構が先にフォールトすることにより、保護が外れ、意図機能が故障に対して暴露されて脆弱になっている期間であるためです。

この期間は安全機構がレイテント状態となっています。これは潜在的に故障しているという意味です。潜在的とは、直ちに故障が危険状態にはつながらず、意図機能の保護が外れている状態を指します。

Pattern 1と2の条件

Pattern 1と2の条件を論理式で書いてみます。まず、Pattern 1の条件であるLFを増加する条件は、2nd SMであるSM2によるSM1のLFの $$ (緩和\cap \overline{通知})\cup\overline{緩和}=\overline{通知}\cup\overline{緩和}=\overline{(緩和\cap通知)} $$ であり、Pattern 2の条件であるLFを減少する条件は、SM2によるSM1のLFの $$ 緩和\cap通知 $$ です。条件としては全てをつくしています。これが正しいかを次の節で検証します。

緩和と通知、修理

ここで、緩和とは何でしょうか?緩和とは悪い影響を減らすことです。従って、ここでいう緩和とは「SM1のLFを減らすという意味」だと考えられます。例えばSM1とSM2が冗長となっている場合には、SM1のフォールトは直ちにLFとはならず、SM2がバックアップします。これは通知はしませんが緩和する場合のLF削減の例です。

一方、SM2がSM1のフォールトを検出すると、緩和はされず通知を行います。警告表示等によりドライバーが車両を修理工場へ持っていき、そこでSM1が修理されることにより、LFの削減が起こります。 Pattern 2の修理という文言で分かるように、規格はフォールトを検出・通知すると、そのフォールトは修理されるのが前提になっています。

このように考えると、SM1のLF削減条件は、 $$ 緩和\cup通知 $$ のように思われます。ところが、2nd Editionで新たに追加された条件である、SM1のフォールトがVSGの可能性を持つことを考えれば、先の緩和を拡張し「SM1のVSG(RF)及びLFの可能性を減らす」ことだと考えます。

SM1のVSG(RF)を減らす条件は、 $$ (VSG)緩和 $$ であり、SM1のLFを減らす条件は、上記のとおり、 $$ (LF)緩和\cup通知 $$ となり、$緩和\cap通知$とはならないようです。いずれにしろ、規格の用語の定義がはっきりしていないために、矛盾が起きてくる例です。例えば、

  • SM1のフォールトによるVSGの可能性はあるのかないのか
  • 緩和とはVSG(RF)の緩和なのかLFの緩和なのかその両方なのか

について、はっきりしていなかったり混乱が見られます。


左矢前のブログ 次のブログ右矢

posted by sakurai on November 13, 2020 #333

DC添え字ネーミングルールの変更

  • DCのネーミング法が1st Editionから変わった。

DC(Diagnostic Coverage)のネーミング法が、対象エレメントからプロパティオウナに変更になりました。

例えば図333.1の式において、

図%%.1
図333.1 2nd Edition PMHF式(部分)

$K_\text{FMC,SM1,RF}$は、1st editionでは$K_\text{FMC,RF}$と書かれていました。これは、IF(対象)の検出カバレージであることから、$K_\text{FMC,IF,RF}$の意味でした。故障率の式中の記号、例えば故障率やDCが、全て対象エレメントで揃うため、誤りにくいことが利点でした。

しかし、2nd editionからこれはSM1のプロパティであるということから、$K_\text{FMC,SM1,RF}$と書かれるようになりました。対象ではなく、そのプロパティを所有しているエレメントに変わったので、わかりにくくなりました。

従来の形式で書けば、図333.1の添え字は、以下のように全てIFで統一されます。 $$ \lambda_\text{IF,DPF,secondary}=(1-F_\text{IF,safe})F_\text{IF,PVSG}K_\text{FMC,IF,RF}\lambda_\text{IF} $$

図333.2に別の例を示します。

図%%.2
図333.2 2nd Edition PMHF式(部分)

これはSM1のフォールトのうちプライマリのLFとなる場合ですが、SM1のプライマリDPF故障率($\lambda_\text{SM1,DPF,primary}$)にSM2により検出できない割合($1-K_\text{FMC1,SM2,MPF})$をかけています。1st editionであればこれは$K_\text{FMC,SM1,MPF}$のように、添え字を対象で表したのですが、2nd editionではプロパティのオウナのSM2と表記されるため、式の統一感がなくなりました。

1st editionの形式で書けば、図333.2の添え字は、以下のように全てSM1で統一されます。 $$ \lambda_\text{SM1,DPF,latent,primary}=\lambda_\text{SM1,DPF,primary}\cdot(1-K_\text{FMC1,SM1,MPF})\\ =(1-F_\text{SM1,safe})(1-F_\text{SM1,PVSG})(1-K_\text{FMC1,SM1,MPF})\lambda_\text{SM1} $$


左矢前のブログ 次のブログ右矢

posted by sakurai on November 12, 2020 #332

DPFの使用法の混同

図332.1に、あるエレメントに1点目のフォールトが起き、その後定期検査が行われ、フォールトが分類され、しばらく運転した後(数年後かもしれない)、関係するエレメントに2点目のフォールトが起きてSGを侵害する場合のDPFの状況を示します。

1点目と2点目のエレメントは関係するエレメントである必要があります。関係とは、1点目のIFのフォールトに対する2点目のSM1のフォールト、あるいはその逆の、1点目のSM1のフォールトに対する2点目のIFのフォールトの意味です。これらのフォールト生起順をIF⇒SM1、SM1⇒IFと記述します。この記法は弊社論文で初めて導入したものです。

ここで、primary DPFに注目すればSM1⇒IFの場合であり、図332.1において、最初がSM1のフォールト、次がIFのフォールトとなる場合です。

図%%.1
図332.1 2つのDPFの図解

ところが、ややこしいことに、最初に起きるのはSMのDPF(=DPF,{latent, detected, percieved}の総称)=primary DPFであり、次にIFのDPFが起きるので、両方ともDPFと呼ばれます。実は、primary DPFもsecondary DPFも最初のフォールトのことです。これが規格を分かりにくくさせています。

  • DPFには2とおりの意味がある。

このように、規格は誤解しやすいネーミング法を取っており、DPFといったときに2とおりの意味があります。最初に起きる「SMのDPF=primary DPF」は、あくまで1点目のフォールトです。これはどちらかと言えば誤った用語であり、本来は本当に2点目に起きるフォールトをDPFと呼ぶべきです。1点目フォールトのことをDPFと呼ぶのは紛らわしいので、用語を変え、例えばPotential Fault (PF)として欲しかったところです。

ただし、式の計算中のDPFは、全て1点目のフォールトと思えばOKです。その理由は、2点目のフォールトが起きる場合はVSGとなるので、その故障率を使用することはないためです。従って式の計算中にDPFとあれば、全て1点目のフォールトだと文脈で分かります。


左矢前のブログ 次のブログ右矢


ページ: