Posts Tagged with "ISO 26262"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

新方式によるPUAの導出 (8)

posted by sakurai on March 26, 2024 #762

ChatGPTにより $Q_{\text{exact},n}(t)$と$Q_\text{approx}(t)$のグラフ作成プログラムを作成してもらいました。そのリストを示します。

import numpy as np
import matplotlib.pyplot as plt
from functools import lru_cache

plt.rcParams['font.family'] = 'serif'
plt.rcParams['mathtext.rm'] = 'Times New Roman'
plt.rcParams['mathtext.fontset'] = 'cm'

# パラメータ設定
lambdaVal = 0.1  # 故障率
tau = 2    # 点検期間
K = 0.5    # 修復率
epsilon = 0.00001  # 不連続点の直前を示すために使用する小さい値

# 関数定義
def R(t):
    """信頼度関数"""
    return np.exp(-lambdaVal * t)

def F(t):
    """故障関数"""
    return 1 - R(t)

@lru_cache(maxsize=None)
def Q_n(t, n):
    """Q_nの再帰関数。結果をキャッシュする。"""
    if n == 0:
        return F(t)
    else:
        return 

def Q_approx(t):
    """tにおけるQ(t)の近似値を計算する関数"""
    u = t % tau
    return (1 - K) * F(t) + K * F(u)

# グラフ描画
fontsize_axes_label = 24 * 1.8
fontsize_ticks = 16 * 1.8
fontsize_legend = 24 * 1.8

plt.figure(figsize=(18, 11))
# 軸(spines)の線幅を太くする
ax = plt.gca()  # 現在の軸を取得
spine_width = 2  # 軸の線幅
for spine in ax.spines.values():
    spine.set_linewidth(spine_width)
    
# 凡例用のダミープロット
plt.plot([], [], '-', label=f'$Q_{{\\text{{exact}},n}}(t)$ for $\\lambda = {lambdaVal}$', color='black')
plt.plot([], [], '--', label=f'$Q_{{\\text{{approx}}}}(t)$ for $\\lambda = {lambdaVal}$', color='black')

# 不連続性を示すために各区間を個別にプロット
for i in range(10):
    start = i * tau
    end = (i + 1) * tau -epsilon # epsilonを削除
    t_vals = np.linspace(start, end, 200)
    Q_exact_vals = [Q_n(t, i) for t in t_vals[:-1]]  # 区間の最後の点を除外してプロット
    Q_approx_vals = [Q_approx(t) for t in t_vals[:-1]]
    
    plt.plot(t_vals[:-1], Q_exact_vals, 'k-', lw=2.5)
    plt.plot(t_vals[:-1], Q_approx_vals, 'k--', lw=2.5)

    # 区間の終わりに白丸をプロット
    plt.plot(end, Q_n(end, i), 'o', mfc='white', mec='black', mew=2, markersize=8)
    plt.plot(end, Q_approx(end), 'o', mfc='white', mec='black', mew=2, markersize=8)

plt.xlabel('Time (t)', fontsize=fontsize_axes_label)
plt.ylabel('$Q(t)$', fontsize=fontsize_axes_label)
plt.xticks(np.arange(0, 11*tau, tau), fontsize=fontsize_ticks)
plt.yticks(fontsize=fontsize_ticks)
legend = plt.legend(fontsize=fontsize_legend)
for handle in legend.legendHandles:
    handle.set_linewidth(2.5)  # ここで線の太さを指定    
plt.grid(True, color='gray', linestyle='-', linewidth=1.4)
plt.ylim(bottom=0)
plt.xlim(0,10*tau)
plt.subplots_adjust(left=0.14, bottom=0.14) 
plt.show()

図762.1に実行結果を示します。これは論文に掲載したグラフの一部です。

図%%.1
図762.1 $Q_{\text{exact},n}(t)$と$Q_\text{approx}(t), \lambda=0.1$のグラフ

図%%.2
図762.2 $Q_{\text{exact},n}(t)$と$Q_\text{approx}(t), \lambda=0.01$のグラフ

図%%.3
図762.3 $Q_{\text{exact},n}(t)$と$Q_\text{approx}(t), \lambda=0.001$のグラフ

なお、

に掲載しています。さらに、

に続きます。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

新方式によるPUAの導出 (7)

posted by sakurai on March 25, 2024 #761

前項までで、正確な$Q_{\text{exact},n}(t)$と近似の$Q_\text{approx}(t)$が求められたので、誤差評価を行います。パラメータは$\lambda=100FIT$、$T_\text{lifetime}=$10万時間、$K=0.5$、$\tau=$1か月とします。すると、$T_\text{lifetime}=1.0\times10^5[H]$、$\tau=730[H]$であり、 $$ Q_n(t)=F(t)-\img[-1.35em]{/images/withinseminar.png}\ n=\lfloor t/\tau\rfloor\ge1\tag{761.1} $$ これより、正確な車両寿命での不稼働確率は、 $$ Q_{\text{exact},136}(T_\text{lifetime})=0.005023250473883639 $$

一方近似式では、 $$ Q_\text{approx}(t)=(1-K_\text{MPF})F(t)+K_\text{MPF}F(u),\ u=\bmod\tau\tag{761.2} $$ これより、 $$ Q_\text{approx}(T_\text{lifetime})=0.005011081829447039 $$

両方の値から誤差は車両寿命において相対誤差は、 $$ \frac{Q_{\text{exact},136}(T_\text{lifetime})-Q_\text{approx}(T_\text{lifetime})}{Q_\text{approx}(T_\text{lifetime})}=\frac{0.005023250473883639-0.005011081829447039}{0.005023250473883639}\\=\img[-1.35em]{/images/withinseminar.png}[\%] $$ と計算され、PMHFの計算上では問題にならないレベルだと判明しました。

ちなみに、前項のChatGPTの作成したグラフ描画ソフトのパラメータを上記のパラメータに置き換え、グラフを車両寿命まで作成しました。次にChatGPTにプログラムを渡して、グラフは不要だからPUAの車両寿命における値を$Q_\text{exact}$と$Q_\text{approx}$の2つを求めて、誤差評価をしてと依頼したところ、修正されたプログラムにより上記の値が算出できました。

ChatGPTにプログラムを書いてもらうのはかなり実施して来ましたが、プログラムを渡してこんな風に改造してというのは新しい試みです。なぜなら、他人のプログラムの改造は人間は嫌がるからです。機械は嫌がらずに素直に実行すると言うのは新しい経験でした。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

posted by sakurai on March 22, 2024 #760

論文のアブストラクトをAJEに提出しましたが、「全体感が見たいので全体を出してくれ」とのご要望で、原稿全体を提出しました。前回までは冠詞の誤り等の文法ミスの修正が中心で、せいぜいが「意味が同じか確認してくれ」というメッセージ付きで文章を修正してきたことはありました。

ところが今回はVIPコースを選択したためか「この間に話題を繋げるような短い段落があると良い」「パラメータを選択した理由があると理解しやすい」「結論はまとめではないから、新規性のあることを書くべきである」等の内容に踏み込んだ示唆を貰い、大変にありがたく感じています。

図%%.1
図760.1 一旦完成した論文6ページの原稿

原稿全体は修正中ですが、一旦アブストラクトを投稿し、No.9のIDを受領しました。後は6月初旬の採択通知を待つのみです。

表760.1 RAMS 2025へのマイルストーン
期限 マイルストーン 状態
2024/5/3 アブストラクト投稿締め切り(システム入力) 投稿済
2024/6/10 アブストラクト採択結果
2024/8/1 論文、プレゼン投稿締め切り(名前、所属無し版)
2024/9/1 第1回論文、プレゼン資料査読コメント受領
2024/10/9 改訂版論文、プレゼン投稿締め切り(名前、所属無し版)
2024/10/22 最終査読コメント受領
2024/10/10 学会出席登録締め切り
2024/10/10 最終論文、プレゼン投稿締め切り(名前、所属有り版)


左矢前のブログ 次のブログ右矢

新方式によるPUAの導出 (6)

posted by sakurai on March 21, 2024 #759

前項までで、正確な$Q_{\text{exact},n}(t)$(758.4)を以下のように求めることができました(再掲)。 $$ Q_{\text{exact},n}(t)=F(t)-\img[-1.35em]{/images/withinseminar.png}\ n=\lfloor t/\tau\rfloor\ge1\tag{759.1} $$ 一方で、近似式は、 $$ Q_\text{approx}(t)=(1-K_\text{MPF})F(t)+K_\text{MPF}F(u),\ u=t\bmod\tau\tag{759.2} $$ でした。この2種類の関数が$\lambda$の変化でどのように変わるかを見てみます。図759.1はそれぞれ2つのグラフが$\lambda=0.1$(パープル)及び$\lambda=0.01$((ブルー)の2種類を描いたものです。

図%%.1
図759.1 正確な$Q_{\text{exact},n}(t)$と近似式$Q_\text{approx}(t)$のグラフ

図759.1のブルーに示すように、$\lambda$が小さければカーブは直線に近づき、誤差が少なくなります。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

新方式によるPUAの導出 (5)

posted by sakurai on March 20, 2024 #758

以下の記事中、ピンクは誤りグリーンは正解を意味しています。

過去記事ではまずPUDを導出し、途中の検出分が全て修理される前提で、最終の検出かつ未修理分のみを不検出に加えてPUAを導出しました。

一方、過去記事において不稼働度(Point Unavailability; PUA)を新方式$\dagger$で求めました。ところが導出の際に式の誤りがあったため再度同じ方法で不稼働度(PUA)を求めてみます。

SMのフォールトが生起したとき、それがレイテントフォールトとなるかならないかは2nd SMの故障検出率で決定されます。これを$K_\text{MPF}$とすると、 $$ K_\text{MPF}=\Pr\{\text{detected }|\text{ failed at }t\}\tag{758.1} $$ ここでは式(758.1)に基づいてPUAを導出します。これは、修理が完全に確率的に行われることを意味し、検出されるされないは故障の原因によらずにSMの能力のみに依存することになります。これは従来の仮定を根本から変更するものであるため、本稿では「新方式」としています。

不稼働度$Q(t)$の一般式

稼働度(Point Availability; PA)の公式から不稼働度は以下のように表せます。 $$ \begin{eqnarray} Q_n(t)&=&F(t)-\int_0^{T_\text{lifetime}}m(x)R(t-x)dx\\ &=&F(t)-\sum_{i=1}^nM(i\tau)R(t-i\tau)\tag{758.2} \end{eqnarray} $$ 定期修理であるため、$\tau_i=i\tau,\ i=1,2,...$が修理時点であり、$M(i\tau)$は修理時点$i\tau$における修理率です。不稼働度はフォールトが起きて累積する検出率に応じた一部の故障が修理され、かつ現在まで生き残っている分を引いたものとなります。

さて、修理時点$i\tau$における修理率$M(i\tau)$はその検査区間内での不信頼度の増加分に故障検出率である(758.1)の$K_\text{MPF}$をかけたものとなることから、 $$ \begin{eqnarray} M(i\tau)&=&K_\text{MPF}\int_{i-1}^iq(x)dx\\ &=&\img[-1.35em]{/images/withinseminar.png} \tag{758.3} \end{eqnarray} $$ なぜその検査区間内かといえば、その前までの故障は全て検査され、不検出分は全てレイテントフォールトとなり不信頼度に加えられるからです。

従って、(758.2), (758.3)より、 $$ Q_n(t)=F(t)-\img[-1.35em]{/images/withinseminar.png}\ n=\lfloor t/\tau\rfloor\ge1\tag{758.4} $$ しかしながら、PUAは求めるべき関数が右辺にあるため陽には求められず、数値計算することになります。図758.1は$\lambda$=0.001, $\tau$=100のときのグラフです。

  • $F(t)$ --- 紫
  • $Q_\text{exact}(t)$ --- 赤
  • $Q_\text{approx}(t)=(1-K)F(t)+KF(u)$ --- 青
  • $Q_\text{approx}(t)$のベースライン$(1-K)F(t)$ --- 緑

図%%.1
図758.1 $Q(t)$のグラフ

従来論文ではPUAとしての$Q_\text{approx}(t)=(1-K)F(t)+KF(u)$を用いていますが、本来は毎回の修理量は徐々に減少していき、不信頼度が増大するための$Q_\text{exact}(t)$のように上振れとなります。

今までの記事は区間修理量一定という、厳密な議論に立てば正しくない仮定の下にPUA及びPUDを導出してきましたが、正しくは本記事のように区間修理量は漸減するとすべきでした。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


$\dagger$2nd SMのDCである$K_\text{MPF}$を条件付き確率と変更する方式


左矢前のブログ 次のブログ右矢

新方式によるPUAの導出 (4)

posted by sakurai on March 19, 2024 #757

ここまで見たように、PMHFの正確な議論のためには論文のロジックをPUA起点からPUD起点に組みかえる必要があります。 $$ M_\text{PMHF}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}q(t)dt=\frac{1}{T_\text{lifetime}}Q(T_\text{lifetime}) $$

現在までの流れ:

  • Kパラメータは条件付き確率ではないと仮定する
  • PUA $Q(t)$を導出する。その前提は「周期間での修理量は常に$KF(\tau)$に等しい」⇒これより $$ Q(t)=(1-K)F(t)+KF(u), u=t\bmod\tau $$
  • PUD $q(t)$はPUA $Q(t)$を時間微分したもの
  • PMHFは平均PUD、すなわちPUA $Q(t)$を車両寿命で割ったものとして導出する

改訂版の流れ:

  • Kパラメータは条件付き確率と仮定(変更)する
  • Kパラメータから微分方程式PUD $q(t)$を導出する $$ q(t)dt=R(t)\lambda dt=f(t)dt $$
  • 「周期の最後で検出し修理する」のと「瞬間瞬間で検出し色付けしておき最後で修理する」のとが等価であることを示す
  • 修理すればそれは良品となるため、周期の最後では不良品のみがLFとして残ることを示す
  • PUDの積分方程式$\int q(t)$を解いて正確なPUA $Q(t)$を導出する $$ Q(t)=K_\text{MPF}R(n\tau)F(u) ,\ \ s.t.\ n=\lfloor \frac{t}{\tau}\rfloor, u=t\bmod\tau\tag{5} $$
  • $R(n\tau)\approx1$の議論を行い、近似PUA(現行のPUA)を導出⇒ここから現在までの流れに合流する
  • PMHFは平均PUD、すなわちPUA $Q(t)$を車両寿命で割ったものとして導出する

こうすることで今までの議論が全て成立することになります。

一例をあげると、 $$ \begin{eqnarray} \begin{cases} \lambda&=10FIT=1.0\times10^{-8}\\ n\tau&\approx T_\text{lifetime}=1.0\times10^{5} \end{cases} \end{eqnarray} $$ これらの数値を用いれば、 $$ R(n\tau)=0.999 $$ となり、ほぼ1であることからこの項は無視できることがわかります。逆に$\lambda$が513[FIT]未満であれば1とみなしても5%程度の誤差で収まります。

注意:
Kパラメータを条件付き確率と仮定することには特に問題は有りません。一方で本記事も、上記のこのマーカーの箇所が誤りのようです。上記は修理可能部分の不信頼度は累積されないとして計算しましたが、実際には不信頼度は累積され、区間の最後で修理されます。従って、不信頼度の累積は高い不稼働度に繋がり、本計算では実際より低く見積もることになります。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

新方式によるPUAの導出 (3)

posted by sakurai on March 18, 2024 #756

さて、微小時間間隔$(t, t+dt)$における不検出部分の微小確率$q_\text{undet}(t)$は、 $$ q_\text{undet}(t)=\Pr\{\text{undetected}\cap\text{failed in }(t, t+dt)\cap\text{up at }t\}\\ =\Pr\{\text{undetected}\hspace{1pt}|\hspace{1pt}\text{failed in }(t, t+dt)\cap\text{up at }t\}\\ \cdot\Pr\{\text{failed in }(t, t+dt)\cap\text{up at }t\}\\ =(1-K_\text{MPF})\cdot\Pr\{\text{failed in }(t, t+dt)\hspace{1pt}|\hspace{1pt}\text{up at }t\}\cdot\Pr\{\text{up at }t\}\\ =(1-K_\text{MPF})\lambda dt R(t)=(1-K_\text{MPF})f(t)dt\tag{756.1} $$ でした。不検出部分は修理の影響を全く受けないため、$Q(t)$は $$ Q_\text{undet}(t)=\int_0^t q_\text{undet}(s)ds=(1-K_\text{MPF})\int_0^tf(s)ds=(1-K_\text{MPF})F(t)\tag{756.2} $$ 他方、検出部分の微小確率$q_\text{det}(t)$は $$ q_\text{det}(t)=\Pr\{\text{detected}\cap\text{failed in }(t, t+dt)\cap\text{up at }t\}\\ =\Pr\{\text{detected}\hspace{1pt}|\hspace{1pt}\text{failed in }(t, t+dt)\cap\text{up at }t\}\\ \cdot\Pr\{\text{failed in }(t, t+dt)\cap\text{up at }t\}\\ =K_\text{MPF}\cdot\Pr\{\text{failed in }(t, t+dt)\hspace{1pt}|\hspace{1pt}\text{up at }t\}\cdot\Pr\{\text{up at }t\}\\ =K_\text{MPF}\lambda dt R(t)=K_\text{MPF}f(t)dt\tag{756.3} $$ この微小確率は累積せずに区間毎に修理され、最後の区間のみ累積されるため、$Q(t)$は $$ \require{cancel} Q_\text{det}(t)=\int_0^t q_\text{det}(s)ds=K_\text{MPF}\int_{n\tau}^t f(s)ds=K_\text{MPF}\left[F(t)-F(n\tau)\right]\\ =K_\text{MPF}\left((\bcancel{1}-e^{-\lambda t})-(\bcancel{1}-e^{-\lambda n\tau})\right)=K_\text{MPF}e^{-\lambda n\tau}\left(1-e^{-\lambda(t-n\tau)}\right)\\ =K_\text{MPF}R(n\tau)F(u) ,\ \ s.t.\ n=\lfloor \frac{t}{\tau}\rfloor,\ u=t\bmod\tau\tag{756.4} $$ 式(756.2)及び (756.4)を加えて、 $$ Q(t)=(1-K_\text{MPF})F(t)+K_\text{MPF}R(n\tau)F(u) ,\ \ s.t.\ n=\lfloor \frac{t}{\tau}\rfloor,\ u=t\bmod\tau\tag{756.5} $$

図756.1に、 $$ \begin{eqnarray} \begin{cases} Q_1(t)&=(1-K_\text{MPF})F(t)+K_\text{MPF}F(u)\\ Q_2(t)&=(1-K_\text{MPF})F(t)+K_\text{MPF}R(n\tau)F(u) ,\ \ s.t.\ n=\lfloor t/\tau\rfloor,\ u=t\bmod\tau\tag{756.6} \end{cases} \end{eqnarray} $$ のグラフを示します。が$Q_1(t)$、が$Q_2(t)$です。

図%%.1
図756.1 $Q_1(t)$と$Q_2(t)$のグラフ

本来なら$Q_2(t)$を使用すべきですが、$Q_1(t)$を近似式として使用します。

注意:
本記事は上記のこのマーカーの箇所が誤りのようです。上記は修理可能部分の不信頼度は累積されないとして計算しましたが、実際には不信頼度は累積され、区間の最後で修理されます。従って、本来不信頼度の累積は高い不稼働度になるところが、本計算ではより低く見積もることになります。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

新方式によるPUAの導出 (2)

posted by sakurai on March 15, 2024 #755

さて、過去記事でKパラメータは条件付き確率ではなく、アーキテクチャ固有の値であると仮定したのには理由があり、2つの問題があるからでした。

問題1
しかしながら、Kパラメータ($K_{\mathrm{FMC,MPF}}$及び$K_{\mathrm{FMC,RF}}$)が条件付き確率として一定だと矛盾が起きます。抑止条件が確率的に作用することにより、例えば1回目にはVSG抑止されたフォールトが、2回目にはVSG抑止されないことが起こりえます。あるいは1回目にはリペアされたフォールトが2回目にはリペアされないことが起こりえます。検出が確率的になされるからとはいえ、同じ故障が検出されたりされなかったりするのは、合理性がありません。

これはIFのフォールトについてのステートメントなので、SMに書き換えます。

問題1
しかしながら、Kパラメータ($K_{\mathrm{MPF}}$)が条件付き確率として一定だと矛盾が起きます。検出が確率的に作用することにより、例えば1回目には検出されリペアされたフォールトが、2回目には検出されないことが起こりえます。検出が確率的になされるからとはいえ、同じ故障が検出されたりされなかったりするのは、合理性がありません。

という問題は、フォールト検出はアーキテクチャに無関係に確率的に行われるとすれば、問題ありません。

次の問題は、

問題2
次に、例えば故障検出率$K_{\mathrm{FMC,MPF}}$について考えると、長時間が経ち故障検出を長く続ける場合を考えます。検出されるフォールトは全量リペアされるのに比べて、検出されないフォールトはどんどん溜まって行き、不信頼度は上昇し続けます。従って、新たにフォールトするうちの検出される部分の比率が高まりそうであるのに、条件付き確率として一定値であると感覚に反します。

これはSMのフォールトについてのステートメントなのでそのままです。

これも検出は確率的に行われるとすれば、問題ありません。検出される部分の比が高まるように思うのは、アーキテクチャ的な構造を前提としているからであり、検出が完全に確率的だとすれば、特に矛盾はありません。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

新方式によるPUAの導出

posted by sakurai on March 14, 2024 #754

以下は全てSMについての議論とします。Kパラメータは条件付き確率ではなく、アーキテクチャ固有の値だと仮定してきました。そこでの議論のうち、$K_\text{RF}$すなわち、1st SMによるVSG preventionはSMについては1として無視して良いです。

しかしながら、以下の証明のように、アーキテクチャ固有の値ではなく、条件付き確率でも同様な結果が得られることが分かります。まず、信頼度と故障率を定義どおり、 $$ \begin{eqnarray} R(t)&=&\Pr\{\text{up at }t\}\\ \lambda dt&=&\Pr\{\text{failed in }(t, t+dt)\hspace{1pt}|\hspace{1pt}\text{up at }t\} \end{eqnarray}\tag{754.1} $$ とし、2nd SMによる検出率$K$を $$ K_\text{MPF}=\Pr\{\text{detected}\hspace{1pt}|\hspace{1pt}\text{failed in }(t, t+dt)\cap\text{up at }t\}\tag{754.2} $$ と仮定します。すると、微小時間間隔$(t, t+dt)$における不検出部分の故障確率は、 $$ \Pr\{\text{undetected}\cap\text{failed in }(t, t+dt)\cap\text{up at }t\}=(1-K_\text{MPF})R(t)\lambda dt=(1-K_\text{MPF})f(t)dt\tag{754.3} $$ よって、0から$t$まで積分すれば、$t$における不検出不信頼度は、 $$ \int_0^t(1-K_\text{MPF})f(s)ds=(1-K_\text{MPF})F(t)\tag{754.4} $$ 他方、微小時間間隔$(t, t+dt)$における検出部分の故障確率は、 $$ \Pr\{\text{detected}\cap\text{failed in }(t, t+dt)\cap\text{up at }t\}=K_\text{MPF}R(t)\lambda dt=K_\text{MPF}f(t)dt\tag{754.5} $$ よって、0から$u\in(0, \tau)$まで積分すれば、$u=t\bmod\tau$における検出不信頼度、すなわち修理確率は、 $$ \int_0^uK_\text{MPF}f(s)ds=K_\text{MPF}F(u), u=t\bmod\tau\tag{754.6} $$ 最後に、検出と不検出は背反事象であり確率は加えることができるため、全確率の定理より修理を考慮した不信頼度、すなわち不稼働度は $$ Q(t)=(1-K_\text{MPF})F(t)+K_\text{MPF}F(u), u=t\bmod\tau\tag{754.7} $$ と求まります。

注意:
ただしこれは全ての区間で修理量が同じという前提に立っています。最新の研究ではこれは近似値だと判明しており、今後この点についてIEEE学会投稿する予定です。また、このブログでも深堀し、一部について開示します。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

PUA関連論文Köhler2021 (5)

posted by sakurai on March 13, 2024 #753

論文$\dagger$の続きです。

4.1 ISO 26262 Approachにおいて誤りをもうひとつ見つけました。

論文(7)式において $$ M_\text{PMHF}=\frac{F(T_\text{L})}{T_\text{L}}=\frac{1-e^{-(1-DC)\lambda T_\text{L}}}{T_\text{L}}\approx\frac{(1-DC)\lambda T_\text{L}}{T_\text{L}}=(1-DC)\lambda\tag{753.1} $$ であると書いています。ここでの誤りは、不検出故障による不信頼度を $$ 1-e^{-(1-DC)\lambda T_\text{L}}\tag{753.2} $$ としたところです。本来の故障率$\lambda$が検出動作によりみかけの故障率$(1-DC)\lambda$になるので、時刻$T_\text{L}$までの不信頼度$F(T_\text{L})$における$\lambda$を$(1-DC)\lambda$で置き換えた(2)式となるように思われます。

しかしながらこれは誤りであり、以下に証明します。まず$t$における不検出不信頼度の正しい式を求めると、 $$ \begin{eqnarray} R(t)&=&\Pr\{\text{up at }t\}\\ \lambda dt&=&\Pr\{\text{failed in }(t, t+dt)|\text{up at }t\}\\ DC&=&\Pr\{\text{detected}|\text{failed in }(t, t+dt)\cap\text{up at }t\}\tag{753.3} \end{eqnarray} $$ これらより、微小時間間隔$(t, t+dt)$における不検出部分の故障確率は、 $$ \Pr\{\text{undetected}\cap\text{failed in }(t, t+dt)\cap\text{up at }t\}=(1-DC)R(t)\lambda dt=(1-DC)f(t)dt\tag{753.4} $$ よって、0から$t$まで積分すれば、$t$における不検出不信頼度は、 $$ \int_0^t(1-DC)f(s)ds=(1-DC)F(t)=(1-DC)(1-e^{-\lambda t})\tag{753.5} $$ であり、(2)のように $$ 1-e^{-(1-DC)\lambda t}\tag{753.6} $$ ではありません。ただし、$\lambda t\ll1$の場合にはいずれも同じ値$(1-DC)\lambda t$に近似されます。

ではどこが誤りかと言えば、 $$ \lambda'=(1-DC)\lambda\tag{753.7} $$ と置き換えると分かりますが、(4)において、$\lambda'$を用いれば、 $$ (4)=(1-DC)R(t)\lambda dt=\lambda'R(t)dt=\lambda'e^{-\lambda t}dt\tag{753.8} $$ (8)の右辺が$\lambda'e^{-\lambda' t}dt$であれば(6)が成立しますが、そうではないので成立しません。近似であると断ってから使用すればまだしも、この著者は安易にこの導出$\ddagger$を使用しているため注意が必要です。


$\dagger$A. Köhler and B. Bertsche, “Cyclisation of Safety Diagnoses: Influence on the Evaluation of Fault Metrics,” 2021 Anuu. Rel. Maint. Symp. (RAMS), pp 1–7, Orlando, FL, USA, (Jan.) 2021.

$\ddagger$みかけの故障率が$(1-DC)\lambda$である場合に、$1-e^{-(1-DC)\lambda t}$となると誤解して不信頼度を導出すること


左矢前のブログ 次のブログ右矢


ページ: