4 |
PMHF計算に関する積分公式 (3) |
引き続き、前稿の発展形の積分公式を載せておきます。本稿では次の(357.1)及び(357.2)を求めます。 $$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}R_\text{SM}(t)f_\text{IF}(t)dt\tag{357.1} $$
$$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}R_\text{SM}(\color{red}{u})f_\text{IF}(t)dt,\ \ s.t.\ \ u:=t\bmod\tau\tag{357.2} $$ まず、(357.1)式に、$R_\text{SM}(t)=e^{-\lambda_\text{SM}t}$及び、$f_\text{IF}(t)=\lambda_\text{IF} e^{-\lambda_\text{IF} t}$を代入し、 $$ (357.1)=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-\lambda_\text{SM}t}\lambda_\text{IF}e^{-\lambda_\text{IF}t}dt=\frac{\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-(\lambda_\text{SM}+\lambda_\text{IF})t}dt\\ =\frac{\lambda_\text{IF}}{T_\text{lifetime}}\left[\frac{e^{-(\lambda_\text{SM}+\lambda_\text{IF})t}}{-(\lambda_\text{SM}+\lambda_\text{IF})}\right]^{T_\text{lifetime}}_0 =\frac{\lambda_\text{IF}}{T_\text{lifetime}(\lambda_\text{SM}+\lambda_\text{IF})}\left(1-e^{-(\lambda_\text{SM}+\lambda_\text{IF})T_\text{lifetime}}\right)\tag{357.3} $$ ここで$\lambda t\ll 1$の条件で$e^{-\lambda t}$のMaclaurin展開は $$ e^{-\lambda t}=1-\lambda t + \frac{1}{2}\lambda^2 t^2-O((\lambda t)^3) $$ となるため、$O((\lambda t)^3)\approx 0$と近似し、これを(357.3)に代入すると、 $$ \require{cancel} (357.3)\approx\frac{\lambda_\text{IF}}{\bcancel{T_\text{lifetime}}\bcancel{(\lambda_\text{SM}+\lambda_\text{IF})}} \left(\bcancel{(\lambda_\text{SM}+\lambda_\text{IF})}\bcancel{T_\text{lifetime}} -\frac{1}{2}(\lambda_\text{SM}+\lambda_\text{IF})^\bcancel{2}{T_\text{lifetime}}^\bcancel{2}\right)\\ =\lambda_\text{IF}\left(1-\frac{1}{2}(\lambda_\text{SM}+\lambda_\text{IF})T_\text{lifetime}\right) =\lambda_\text{IF}-\frac{\lambda_\text{IF}}{2}(\lambda_\text{IF}+\lambda_\text{SM})T_\text{lifetime}\tag{357.4} $$ 以上から次のように(357.1)の値が求められました。 $$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}R_\text{SM}(t)f_\text{IF}(t)dt\approx\lambda_\text{IF}\left(1-\frac{1}{2}(\lambda_\text{SM}+\lambda_\text{IF})T_\text{lifetime}\right)\tag{357.5} $$
次に(357.2)式はやや複雑になりますが、基本的には同様な計算を行います。まず、$u:=t\bmod\tau$であることから、$t=i\tau+u, i=0, 1, 2, ..., n-1, T_\text{lifetime}=n\tau$とおき、$t$を$i$と$u$で表します。従って(357.2)に$R_\text{SM}(u)=e^{-\lambda_\text{SM}u}$及び、$f_\text{IF}(i\tau+u)=\lambda_\text{IF} e^{-\lambda_\text{IF}(i\tau+u)}$を代入し、 $$ (357.2)=\frac{1}{T_\text{lifetime}}\sum_{i=0}^{n-1} \int_{i\tau}^{(i+1)\tau}e^{-\lambda_\text{SM}u}\lambda_\text{IF}e^{-\lambda_\text{IF}(i\tau+u)}du\\ =\frac{\lambda_\text{IF}}{T_\text{lifetime}}\sum_{i=0}^{n-1}e^{-\lambda_\text{IF}i\tau}\int_0^{\tau}e^{-(\lambda_\text{SM}+\lambda_\text{IF})u}du\tag{357.6} $$ ここで、$\sum_{i=0}^{n-1}e^{-\lambda_\text{IF}i\tau}$を計算すると、等比数列の和及びMaclaurin展開の1次近似より、 $$ \sum_{i=0}^{n-1}e^{-\lambda_\text{IF}i\tau} =\frac{1-e^{-\lambda_\text{IF}T_\text{lifetime}}}{1-e^{-\lambda_\text{IF}\tau}} \approx\frac{\bcancel{\lambda_\text{IF}}T_\text{lifetime}}{\bcancel{\lambda_\text{IF}}\tau} =\frac{T_\text{lifetime}}{\tau}\tag{357.7} $$ これを用いて、 $$ (357.5)=\frac{\lambda_\text{IF}}{\bcancel{T_\text{lifetime}}}\frac{\bcancel{T_\text{lifetime}}}{\tau}\left[\frac{e^{-(\lambda_\text{SM}+\lambda_\text{IF})u}}{-(\lambda_\text{SM}+\lambda_\text{IF})}\right]^{\tau}_0 =\frac{\lambda_\text{IF}}{\tau(\lambda_\text{SM}+\lambda_\text{IF})}\left(1-e^{-(\lambda_\text{SM}+\lambda_\text{IF})\tau}\right)\tag{357.8} $$ 同様にMaclaurin展開の2次近似を用いると、 $$ e^{-\lambda t}\approx1-\lambda t + \frac{1}{2}\lambda^2 t^2 $$ より、 $$ (357.7)\approx\frac{\lambda_\text{IF}}{\bcancel{\tau(\lambda_\text{SM}+\lambda_\text{IF}})} \left(\bcancel{(\lambda_\text{SM}+\lambda_\text{IF})\tau} -\frac{1}{2}(\lambda_\text{SM}+\lambda_\text{IF})^\bcancel{2}\tau^\bcancel{2}\right)\\ =\lambda_\text{IF}\left(1-\frac{1}{2}(\lambda_\text{SM}+\lambda_\text{IF})\tau\right) =\lambda_\text{IF}-\frac{\lambda_\text{IF}}{2}(\lambda_\text{IF}+\lambda_\text{SM})\tau\tag{357.9} $$ 以上から次のように(357.2)の値が求められました。 $$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}R_\text{SM}(u)f_\text{IF}(t)dt\approx\lambda_\text{IF}\left(1-\frac{1}{2}(\lambda_\text{SM}+\lambda_\text{IF})\tau\right),\ \ s.t.\ \ u:=t\bmod\tau\tag{357.10} $$