Posts Issued on March 26, 2020

$M_\text{PMHF}$の計算 (11)

posted by sakurai on March 26, 2020 #227

#223に示した理由により、本稿の議論は全て取り消します。

前稿において、LAT2ではIFのAvailability(227.1で赤字で表示)は$R_\text{IF}(t)$でも$A_\text{IF}(t)$でもないことを解説しました。 $$ \overline{q_{\mathrm{DPF1,IFR}}}=\frac{K_{\mathrm{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)\color{red}{A_{\mathrm{IF}}(t)}\lambda_{\mathrm{IF}}dt \approx K_\text{IF,RF}\alpha \tag{227.1} $$ LAT2に来た時刻を$s$としたとき、$A_\text{IF}(s)R_\text{IF}(t-s)$で表される状態確率となりますが、問題は$s$が確率的に値を取ることです。これを消去するため、前稿(224.8)の結果を使用すれば、 $$ (227.1)=\frac{K_\mathrm{IF,RF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)\left(1-\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}(t-\tau)\right)R_\text{IF}(t)\lambda_\mathrm{IF}dt\\ =\frac{K_\mathrm{IF,RF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)\left(1-\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}(t-\tau)\right)f_\text{IF}(t)dt\\ =\frac{K_\mathrm{IF,RF}}{T_\text{lifetime}}\left(1+\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}\tau\right)\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)f_\text{IF}(t)dt\\ -\frac{K_\mathrm{IF,RF}K_\text{IF,MPF}\lambda_\text{IF}}{2T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)tf_\text{IF}(t)dt \tag{227.2} $$ (227.2)右辺第1項は、積分公式から $$ \frac{K_\mathrm{IF,RF}}{2}\left(1+\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}\tau\right)\lambda_\text{IF}\lambda_\text{SM}\left[(1-K_\text{SM,MPF})T_\text{lifetime}+K_\text{SM,MPF}\tau\right]\tag{227.3} $$ (227.2)右辺第2項を(一部の係数を除き)展開すると、 $$ \require{cancel} \img[-1.35em]{/images/withinseminar.png}\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\left[(1-K_\text{SM,MPF})F_\mathrm{SM}(t)tf_\text{IF}(t)+K_\text{SM,MPF}F_\mathrm{SM}(u)tf_\text{IF}(t)\right]dt\\ =\frac{(1-\bcancel{K_\text{SM,MPF}})}{T_\text{lifetime}}\lambda_\text{IF}\int_0^{T_\text{lifetime}}te^{-\lambda_\text{IF}t}dt-\frac{1-K_\text{SM,MPF}}{T_\text{lifetime}}\lambda_\text{IF}\int_0^{T_\text{lifetime}}te^{-(\lambda_\text{IF}+\lambda_\text{SM})t}dt\\ +\bcancel{\frac{K_\text{SM,MPF}\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}te^{-\lambda_\text{IF}t}dt}-\frac{K_\text{SM,MPF}\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}te^{-\lambda_\text{IF}t-\lambda_\text{SM}u}dt\\ =\frac{\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}te^{-\lambda_\text{IF}t}dt-\frac{1-K_\text{SM,MPF}}{T_\text{lifetime}}\lambda_\text{IF}\int_0^{T_\text{lifetime}}te^{-(\lambda_\text{IF}+\lambda_\text{SM})t}dt\\ -\frac{K_\text{SM,MPF}\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}te^{-\lambda_\text{IF}t-\lambda_\text{SM}u}dt \quad\text{s.t. }u:=t\bmod\tau\tag{227.4} $$ (225.3)及び(226.1)の結果を用いて、 $$ (227.4)=\lambda_\text{IF}\left(\frac{T_\text{lifetime}}{2}-\frac{\lambda_\text{IF}T_\text{lifetime}^2}{3}\right)\\ -(1-K_\text{SM,MPF})\lambda_\text{IF}\left(\frac{T_\text{lifetime}}{2}-\frac{(\lambda_\text{IF}+\lambda_\text{SM})T_\text{lifetime}^2}{3}\right)\\ -K_\text{SM,MPF}\lambda_\text{IF}\img[-1.35em]{/images/withinseminar.png} \quad\text{s.t. }u:=t\bmod\tau\tag{227.5} $$


左矢前のブログ 次のブログ右矢