10 |
ISO 26262のFTAに関する論文 (17) |
参照論文では、前提が誤っている$\dagger$ものの、2nd Edition規格式に近い形でFTを構成しているようです。例えば、AのRFが先に起きて、BのSPF/RFが後から起きる場合と、その逆パターンのORとなっています。一方、規格式ではAのLFが先に起きて、BのSPF/RFが後から起きる場合と、その逆パターンのORとなっています。従って、参照論文のRFをLFと読み替えれば、規格式と結果的に同じになります。
$$ \begin{eqnarray} \Pr\{\text{TOP Failure}\}&=&M_\text{PMHF}T_\text{L} \\ &=&\frac{1}{2}\lambda_\text{E1}\left[(1-K_\text{E1,MPF})T_\text{L}+K_\text{E1,MPF}\tau\right]\cdot \lambda_\text{E2}T_\text{L} \\ &+&\frac{1}{2}\lambda_\text{E2}\left[(1-K_\text{E2,MPF})T_\text{L}+K_\text{E2,MPF}\tau\right]\cdot \lambda_\text{E1}T_\text{L}\\ &=&\frac{1}{2}(\lambda_\text{E1}T_\text{L})(\lambda_\text{E2}T_\text{L})\left(2-K_\text{E1,MPF}-K_\text{E2,MPF}+(K_\text{E1,MPF}+K_\text{E2,MPF})\cdot\frac{\tau}{T_\text{L}}\right)\\ &=&(\lambda_\text{E1}T_\text{L})(\lambda_\text{E2}T_\text{L})C_\text{1, 2}' \end{eqnarray} $$
今回のE1, E2のペアで$C_\text{1, 2}'$を計算したところ、表218.1に示すようにC10からC19の10種類の定数が得られました。
定数記号 | 定数値 |
---|---|
C10 | 0.23572 |
C11 | 0.27046 |
C12 | 0.30520 |
C13 | 0.38626 |
C14 | 0.42100 |
C15 | 0.53680 |
C16 | 0.61786 |
C17 | 0.65260 |
C18 | 0.76840 |
C19 | 1.00000 |
よって、2AND項にそれぞれこの定数項を加えて3ANDとすれば、図218.1のようなFTとなります。
$\dagger$前稿でご説明したように、冗長チャネル内のSMは、2nd order SMなので、冗長チャネル内のエレメントの故障の場合は、RFではなくLFとなります。参照論文ではRF、LFの両方が起きると考えています。