Posts Issued on March 27, 2020

$M_\text{PMHF}$の計算 (12)

posted by sakurai on March 27, 2020 #228

#223に示した理由により、本稿の議論は全て取り消します。

前稿において、(227.2)右辺第2項を(一部の係数を除き)展開すると、 $$ \require{cancel} \img[-1.35em]{/images/withinseminar.png}\\ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)tf_\text{IF}(t)dt \tag{228.1} $$ ここで、WolframAlphaによる級数展開を用いると、

integral_0^(τ) (1 - exp(-λ_2 t)) λ_1 exp(-λ_1 t) dt * (τ^-1)

$$ \frac{1}{\tau}\int_0^\tau F_2(t)f_1(t)dt \approx\frac{1}{2}\lambda_1\lambda_2\tau \tag{228.2} $$

integral_0^(τ) (1 - exp(-λ_2 t)) λ_1 exp(-λ_1 t) t dt * (τ^-1)

$$ \frac{1}{\tau}\int_0^\tau F_2(t)tf_1(t)dt \approx\frac{1}{3}\lambda_1\lambda_2\tau^2 \tag{228.3} $$

$$ (228.1)=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\left[(1-K_\text{SM,MPF})F_\mathrm{SM}(t)tf_\text{IF}(t)+K_\text{SM,MPF}F_\mathrm{SM}(u)tf_\text{IF}(t)\right]dt\\ =\frac{1-K_\text{SM,MPF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}F_\text{SM}(t)tf_\text{IF}(t)dt+\frac{K_\text{SM,MPF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}F_\text{SM}(u)tf_\text{IF}(t)dt\\ \quad\text{s.t. }u:=t\bmod\tau\tag{228.4} $$ (228.4)右辺第2項を$t=i\tau+u, i=0,1,...,n-1,T_\text{lifetime}=n\tau$として$t$を$u$で表す変数変換を行うと、 $$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}F_\text{SM}(u)tf_\text{IF}(t)dt =\frac{1}{T_\text{lifetime}}\sum_{i=0}^{n-1}\int_0^\tau F_\text{SM}(u)(i\tau+u)f_\text{IF}(i\tau+u)du\\ =\frac{\tau}{T_\text{lifetime}}\sum_{i=0}^{n-1}ie^{-\lambda_\text{IF}i\tau}\int_0^\tau F_\text{SM}(u)f_\text{IF}(u)du+\frac{1}{T_\text{lifetime}}\sum_{i=0}^{n-1}e^{-\lambda_\text{IF}i\tau}\int_0^\tau F_\text{SM}(u)uf_\text{IF}(u)du\\ =\frac{1}{\bcancel{T_\text{lifetime}}}\left(\frac{1}{3}\lambda_\text{IF}\lambda_\text{SM}\tau^{\bcancel{3}2}\right)\left(\bcancel{\tau}\frac{\bcancel{T_\text{lifetime}}(T_\text{lifetime}-\tau)}{\bcancel{\tau}^\bcancel{2}}+\frac{\bcancel{T_\text{lifetime}}}{\bcancel{\tau}}\right)\\ =\frac{1}{3}\lambda_\text{IF}\lambda_\text{SM}\tau^2(T_\text{lifetime}-\tau+1) \tag{228.5} $$ (228.3)を(228.4)の第1項、(228.5)を第2項に用いて、

$$ (228.1)=\frac{1-K_\text{SM,MPF}}{\bcancel{T_\text{lifetime}}} \left(\frac{1}{3}\lambda_\text{IF}\lambda_\text{SM}T_\text{lifetime}^{\bcancel{3}2}\right) +K_\text{SM,MPF} \left(\frac{1}{3}\lambda_\text{IF}\lambda_\text{SM}\tau^2(T_\text{lifetime}-\tau+1)\right) \tag{228.6} $$


左矢前のブログ 次のブログ右矢