Posts Tagged with "FPGA"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.
posted by sakurai on September 27, 2022 #517

完成したゲームのオープニングからのゲーム開始画面です。動画変換フレームレートの関係で、ゼロの点滅がハッキリと再生されませんが、実際にはきれいに点滅しています。

図%%.1
図517.1 オープニングアニメーションシーケンス

実行のシーケンス

  • 得点表(Score Advance Table)アニメーション表示
  • Fボタンを押す
  • "PUSH ONLY 1PLAYER BUTTON"を表示、CREDIT=01
  • Sボタンを押す
  • "PLAY PLAYER<1>"を表示、CREDIT=00、SCORE<1>をゼロにし、規定回数点滅
  • ゲームスタート

図513.5
図513.5 ボタン配置図

左矢前のブログ 次のブログ右矢

posted by sakurai on September 26, 2022 #516

Y字リプレースアニメーションのソース

Y字リプレースアニメーションのソースを示します。Y字リプレースアニメーションもFボタンにより中断するため、各所でFボタンを見ています。

function Stmt replaceY;
   return (seq
      // from right to left
      for (i <= 228; i >= 142; i <= i - 2) seq
         copyArea((pack(i)[1] == 1'b1) ? 68 : 84 , 32, i, 67, 10, 8);
         wait_timer(`TICK_WAIT3);
         if (fbutton) break;
      endseq // for
      if (fbutton) break;
      // from left to right
      for (i <= 136; i <= 226; i <= i + 2) seq
         copyArea((pack(i)[1] == 1'b1) ? 75 : 91 , 107, i, 67, 16, 8);
         wait_timer(`TICK_WAIT3);
         if (fbutton) break;
      endseq // for
      eraseArea(226, 67, 16, 8);
      wait_timer(`TICK_WAIT32);
      if (fbutton) break;
      // from right to left
      for (i <= 226; i >= 136; i <= i - 2) seq
         copyArea((pack(i)[1] == 1'b1) ? 77 : 93 , 117, i, 67, 16, 8);
         wait_timer(`TICK_WAIT3);
         if (fbutton) break;
      endseq // for
      wait_timer(`TICK_WAIT32);
      if (fbutton) break;
      eraseArea(141, 67, 9, 8);
      wait_timer(`TICK_WAIT32);
      if (fbutton) break;
   endseq);
endfunction

これだけでなく、タイマールーチンの中でもFボタンによる中断を見ていますが、ちょっとやり過ぎのようです。実際には多少間引いても体感に影響しないと思います。


左矢前のブログ 次のブログ右矢

posted by sakurai on September 23, 2022 #515

オープニングアニメーションのソース

オープニングアニメーションのソースを示します。オープニングアニメーションはFボタン(コイン投入の模擬)により中断するため、各所でFボタンを見ています。

function Stmt openingAnimation;
   return (seq
      // Opening Animation
      foa <= True;
      eraseArea( 0, 41, 255, 199); // erase screen
      eraseArea(25,242, 5, 7); // erase zanki
      stringS1; // PLAY ...
      if (fbutton) break;
      wait_timer(`TICK_WAIT64);
      if (fbutton) break;
      stringS2; // *SCORE ...
      if (fbutton) break;
      wait_timer(`TICK_WAIT32);
      if (fbutton) break;
      stringS3; // =? MYSTERY ...
      if (fbutton) break;
      wait_timer(`TICK_WAIT64);
       if (fbutton) break;
      replaceY; // ^ -> Y
      if (fbutton) break;
      wait_timer(`TICK_WAIT64);
      if (fbutton) break;
      foa <= False;
   endseq);
endfunction

左矢前のブログ 次のブログ右矢

posted by sakurai on September 22, 2022 #514

オープニングアニメーションの追加

テスト用のソースを示します。コンパイル時間短縮のため、ゲーム部分をカットしています。

// メインフロー
Stmt main = seq
   while (True) seq
      while (!fbutton) seq
         openingAnimation; // Fボタンによりブレーク
      endseq // while
      openingDisplay;      // 表示のみ、ボタンを待たない
      await(sbutton);        // Sボタンによりブレーク
      openingDisplay2;    // タイマーによりブレーク
      // game start
   endseq // while
endseq;

// CREDIT 01, "PUSH ONLY 1PLAYER BUTTON"
function Stmt openingDisplay;
   return (seq
      eraseArea( 0, 41, 255, 199); // erase screen
      stringS5; // PUSH ONLY ...
      copyArea(10, 162, 217, 241, 5, 7); // CREDIT 00->01
   endseq);
endfunction

// CREDIT 00, "PLAY PLAYER<1>, 00000"
function Stmt openingDisplay2;
   return (seq
      eraseArea( 0, 41, 255, 199); // erase screen
      stringS6; // PLAY PLAYER<1>
      copyArea(2, 162, 217, 241, 5, 7); // CREDIT 01->00
      for (i <= 1; i < 15; i <= i + 1) seq
         // erase zero
         eraseArea(40, 25, 37, 7);
         wait_timer(`TICK_WAIT4); // wait 66.66msec
         stringS7; // 00000
         wait_timer(`TICK_WAIT4); // wait 66.66msec
      endseq // for
   endseq);
endfunction

左矢前のブログ 次のブログ右矢

posted by sakurai on September 21, 2022 #513

オープニングアニメーションの追加

この動画の最初の部分を参考にして、オープニングアニメーションを作成します。

  1. インベーダの種類や点数の紹介、と同時に逆さYを引っ張って行き正立Yに入れ替えます。アニメーションがメインなので、これをopeningAnimationシーケンスと呼び、同名の関数により実行します。Fボタンによりコイン投入を模擬します。
    図%%.1
    図513.1 openingAnimation画面
  2. コインを投入すると、"PUSH ONLY 1PLAYER BUTTON"と表示され、CREDITが+1されます。アニメーションは無いため、これをopeningDisplayシーケンスと呼び、同名の関数により実行します。Sボタンを待ちます。
    図%%.2
    図513.2 openingDisplay画面
  3. Sボタンを押すと、"PLAY PLAYER<1>"と表示され、CREDITが-1されます。同時に得点が"00000"となり、点滅します。これをopeningDisplay2シーケンスと呼び、同名の関数により実行します。
    図%%.3
    図513.3 openingDisplay画面1
    図%%.4
    図513.4 openingDisplay画面2
  4. ゼロ点滅を規定回数実行すると自動的にゲームを開始します。

図513.5にSボタンとFボタンの配置を示します。

図%%.5

図513.5 ボタン配置図

左矢前のブログ 次のブログ右矢

posted by sakurai on September 20, 2022 #512

テストベンチ

テストベンチは変わりません。

Tb.bsv

import StmtFSM::*;
import Uart::*;

(* synthesize *)
module mkTb();
      Uart_ifc uart <- mkUart();

      Stmt s = seq
            delay(8);
            uart.load(8'h55);
            uart.load(8'haa);
            uart.load(8'hc3);
            uart.load(8'h3c);
            await(uart.done());
            $finish;
      endseq;
      
      mkAutoFSM(s);

endmodule
 

Bsimシミュレーション

Bsimシミュレーションのコマンドは次のとおりです。

$ bsc -u -sim Tb.bsv; bsc -sim -e mkTb -o Tb.exec; ./Tb.exec -V bsim.vcd; gtkwave -A bsim.vcd

以下にBsimシミュレーション結果を示します。意外なことに明示的にdone信号を書いたにも関わらず、シミュレーションのダンプの中にdone信号がありませんでした。

図%%.1
図512.1 Bsimシミュレーション波形

テストベンチ内でレジスタにuart.doneを格納するようにしたら、インタフェースにuart.doneが現れました。awaitで使用するくらいでは削除され、レジスタに取って初めて残すようです。

図%%.2
図512.2 Bsimシミュレーション波形

Verilogシミュレーション

Verilogシミュレーションにおいては、モジュール(mkUart.v)、それをドライブするテストベンチ(mkTb.v)の上位に最上位(top.v)を配備します。これはクロックやリセットを供給するモジュールですが、Bsimの場合はシステムから暗黙にクロックやリセットが供給される一方、Verilogでは供給されないためです。

top.v

`timescale 1ns/1ns
module top();
      /*AUTOREGINPUT*/
      // Beginning of automatic reg inputs (for undeclared instantiated-module inputs)
      reg      CLK;        // To mkTb_inst of mkTb.v
      reg      RST_N;        // To mkTb_inst of mkTb.v
      // End of automatics
      /*AUTOWIRE*/
      mkTb mkTb_inst(/*AUTOINST*/
      // Inputs
      .CLK    (CLK),
      .RST_N    (RST_N));

      initial begin
            RST_N = 1'b0;
            #10;
            RST_N = 1'b1;
      end
      initial begin
            CLK = 1'b0;
            forever begin
        #5 CLK = ~CLK;
            end
      end
      initial begin
            $dumpfile("verilog.vcd");
            $dumpvars;
      end
endmodule // top

Verilogシミュレーションのコマンドは次のとおりです。

$ bsc -u -verilog Tb.bsv; iverilog top.v mkTb.v mkUart.v -o ./mkTb.exev; ./mkTb.exev; gtkwave -A verilog.gtkw

Verilogシミュレーションのほうには当然ですが、uart.done信号が存在します。

図%%.3
図512.3 Verilogシミュレーション波形

左矢前のブログ 次のブログ右矢

posted by sakurai on September 19, 2022 #511

UARTの改良点

過去記事においてUARTを設計しましたが、見直したところ改良点が見つかりました。 改良点はdoneフラグの生成です。実はハンドシェークは自動的にenableとreadyの2線で行われるので、doneが無くても良いのですが、test benchで終了を知りたい場合には必要です。

Uart.bsv

import StmtFSM::*;

interface Uart_ifc;
      method Bit#(1) read();
      method Action load(Bit#(8) newdata);
      method Bool done();
endinterface

(* synthesize, always_ready="read, done" *)
module mkUart(Uart_ifc);
      Reg#(Bit#(8)) data <- mkRegU;
      Reg#(Bit#(1)) odata <- mkReg(1'h1); // stop bit

      Stmt s= seq
            odata <= 1'h0; // start bit
            repeat (8) action
                  odata <= data[0];
                  data <= (data >> 1);
            endaction
            odata <= 1'h1; // stop bit
      endseq;

      FSM fsm <- mkFSM(s);

      method Bit#(1) read();
            return odata;
      endmethod
      method Bool done();
            return fsm.done();
      endmethod
      method Action load(Bit#(8) newdata);
            action
                  data <= newdata;
                  fsm.start();
            endaction
      endmethod
endmodule

この記述のように、従来設けてあったレジスタのdoneフラグを削除し、ステートマシンのdoneを上位に返すことで実現します。さらに、インタフェースのreadとdoneは常にreadyであるため、それらのready信号は不要なので削除しています。


左矢前のブログ 次のブログ右矢

posted by sakurai on September 16, 2022 #510

Graphic Controlerの再設計

完成したIP diagramを510.1に示します。3個のサブモジュールをまとめたので、graphic階層はなくなりました。

図%%.1
図510.1 BSVによるグラフィックコントローラ

BSVソース

GraphicFSM.bsv:

// グラフィックディスプレイコントローラー、BSVによる実装
import StmtFSM::*;
// 各種タイミングパラメータの定義
`define HD  800  // 水平解像度
`define HFP 16   // 水平フロントポーチ
`define HSP 80   // 水平同期期間
`define HBP 160  // 水平バックポーチ
`define HO  `HFP + `HSP + `HBP  // 水平オフセット
`define HL  `HD + `HO  // 一行当たりのピクセル数

`define VD  600  // 垂直解像度
`define VFP 1    // 垂直フロントポーチ
`define VSP 3    // 垂直同期期間
`define VBP 21   // 垂直バックポーチ
`define VO  `VFP + `VSP + `VBP  // 垂直オフセット
`define VL  `VD + `VO  // 一画面当たりの行数

// その他の定義
`define EHD 512  // 有効水平解像度
`define EVD 512  // 有効垂直解像度

// ログ幅の定義
`define HW  11  // log2(1056) = 10.04439
`define VW  10  // log2(628) = 9.294621

// アドレス型の定義
typedef Bit#(16) Addr_t;

// インターフェースの定義
interface GraphicFSM_ifc;
   method Bool xhs();      // 水平同期信号出力
   method Bool xvs();      // 垂直同期信号出力
   method Addr_t address();  // VRAMアドレス出力
   (* prefix="" *)
   method Action idata(Bit#(4) indata); // VRAMデータ入力
   (* prefix="" *)
   method Action expl(Bool exp);  // 爆発入力
   method Bit#(1) rd();  // 赤出力
   method Bit#(1) gd(); // 緑出力
   method Bit#(1) bd();  // 青出力
endinterface

// モジュールの定義
(* synthesize,always_ready,always_enabled *)
module mkGraphicFSM(GraphicFSM_ifc);

   Reg#(UInt#(`HW)) x <- mkRegU;     // 水平方向のカウンタ
   Reg#(UInt#(`VW)) y <- mkRegU;     // 垂直方向のカウンタ
   Reg#(Bool) in_xhs <- mkReg(False),   // 水平同期信号フラグ
             in_xvs <- mkReg(False),  // 垂直同期信号フラグ
              in_hdt <- mkReg(False),
              in_vdt <- mkReg(False);
   UInt#(`HW) ehoff = (`HD-`EHD)/2;
   UInt#(`VW) evoff = (`VD-`EVD)/2;
   Reg#(Bit#(4)) in_data <-mkRegU;  // VRAMデータ
   Reg#(Bool) in_exp <- mkReg(False); // 爆発フラグ

// メインループの定義
   Stmt main = seq
      while(True) seq
//       for (y <= 0; y < `VL; y <= y+1) seq
         y <= 0;
         while (y < `VL) seq
//          for (x <= 0; x < `HL; x <= x+1) action  --- for consumes two cycles, then we like to use while
            x <= 0;
            while (x < `HL) action
               if (((`HD+`HFP)<=x)&&(x<(`HD+`HFP+`HSP))) in_xhs <= False;
               else in_xhs <= True;
               if ((ehoff<=x)&&(x while
            y <= y + 1;
         endseq // for -> while
         $display("%3d %3d", y, x);
      endseq // while(True)
   endseq; // Stmt       // xから水平オフセット(ehoff)を減算してパックし、右に1ビットシフトする。
   Bit#(`HW)xx = pack(x-ehoff)>>1;
   
   // yから垂直オフセット(evoff)を減算してパックし、右に1ビットシフトする。
   Bit#(`VW)yy = pack(y-evoff)>>1;
    // xxとyyを8ビットに切り詰める。
   Bit#(8)xxx = truncate(xx);
   Bit#(8)yyy = truncate(yy);
   // xxxとyyyを合成して16ビットのアドレスを作成。
   Bit#(16) in_addr = {yyy, xxx};
   // 水平データタイミング(in_hdt)と垂直データタイミング(in_vdt)をANDで合成。
   Bool in_dt = in_hdt && in_vdt;
   // 爆発フラグ(in_exp)に基づいて赤色成分のデータを処理。
   Bit#(1) in_rd = !in_exp ? in_data[2] & pack(in_dt) : (in_data[2] | in_data[1] | in_data[0]) & pack(in_dt);
   // 爆発フラグ(in_exp)に基づいて緑色成分のデータを処理。
   Bit#(1) in_gd = !in_exp ? in_data[1] & pack(in_dt) : 1'b0;
   // 爆発フラグ(in_exp)に基づいて青色成分のデータを処理。
   Bit#(1) in_bd = !in_exp ? in_data[0] & pack(in_dt) : 1'b0;
   
   // ステートマシン生成
   mkAutoFSM(main);

   // メソッド定義
   method Bool xhs();
      return in_xhs;
   endmethod
   method Bool xvs();
      return in_xvs;
   endmethod
   method Addr_t address();
      return in_addr;
   endmethod
   method Action idata(Bit#(4) indata);
      in_data <= indata;
   endmethod
   method Action expl(Bool exp);
      in_exp <= exp;
   endmethod
   method Bit#(1) rd();
      return in_rd;
   endmethod
   method Bit#(1) gd();
      return in_gd;
   endmethod
   method Bit#(1) bd();
      return in_bd;
   endmethod

endmodule: mkGraphicFSM
  • actionからendactionまでは1サイクル実行です。
  • verilogと同様、"<="はノンブロッキング代入でDFFが、"="はブロッキング代入で組み合わせ回路がそれぞれ生成されます。

当初、水平のオフセットを表す定数EHOFFは、上記のような

UInt#(`HW) ehoff = (`HD-`EHD)/2;

という変数ではなく、define文により

`define EHOFF      (`HD-`EHD)/2

のように定義していたのですが、defineの中でカッコや乗除算は使用できないようなので、変数としました。

ところが、生成されたVerilogを確認したところ、bscの最適化により定数となっており、レジスタは存在しませんでした。結論として、マクロで定数定義してもレジスタ宣言しても、オーバヘッドは変わりません。


左矢前のブログ 次のブログ右矢

posted by sakurai on September 15, 2022 #509

Graphic Controlerの再設計

引き続き、従来設計ではVerilogで設計していたものを勉強の目的からBSVに置き換えます。Graphic ControllerはVRAMへアドレスを出力し、VRAMデータを読み出し、また水平同期、垂直同期、表示期間等のタイミング信号を作成するモジュールです。

ついでにSVGAのタイミング変更をします。SVGAタイミング(魚拓)によれば、SVGA Signal 800 x 600 @ 75 Hz timingは以下のとおり。

Screen refresh rate 75 Hz
Vertical refresh 46.875 kHz
Pixel freq. 49.5 MHz

ここで、Screen refresh rateは垂直同期信号周波数で、フレームのライン数(625)から自動的に決まります。Vertical refreshは水平同期信号周波数で、ラインのピクセル数(1056)から自動的に決まります。従ってここで重要なのはPixel freq.のピクセルクロック周波数のみです。

- Horizontal timing (line)

Scanline part Pixels Time [µs]
Visible area 800 16.161616161616
Front porch 16 0.32323232323232
Sync pulse 80 1.6161616161616
Back porch 160 3.2323232323232
Whole line 1056 21.333333333333

ラインの総ピクセル数は他を合計すれば自動的に決まります。

- Vertical timing (frame)

Frame part Lines Time [ms]
Visible area 600 12.8
Front porch 1 0.021333333333333
Sync pulse 3 0.064
Back porch 21 0.448
Whole frame 625 13.333333333333

フレームの総ライン数は他を合計すれば自動的に決まります。

Verilogによる設計(過去記事)では、水平カウンタ、垂直カウンタを別々に設け、水平のタイミングデコーダと垂直のタイミングデコーダにより同期信号等を作成していました。また、自機が破壊された場合に全画面を赤色表示にするモジュールを図414.2のように、後段に接続していました。また、VRAMデータ4bitのうちRGBを表す3bitを取り出すために、xisliceモジュールを用いていました。

図414.2
図414.2 従来のグラフィックコントローラ階層図

今回BSVで再設計するにあたり、3個に分かれていたモジュール構成を1個にまとめます。

アルゴリズム説明

Graphics.bsvの中心部分:

     y <= 0;
     while (y < `VL) seq
//       for (y <= 0; y < `VL; y <= y+1) seq
        x <= 0;
//          for (x <= 0; x < `HL; x <= x+1) action  --- "for statement" consumes two cycles, so we like to use "while"
        while (x < `HL) action
           if (((`HD+`HFP) while
        y <= y + 1;
     endseq // for -> while

このように、y方向とx方向の2次元方向にドットクロックを数えます。コメントされている行のように、本来for文を2重で回したいのですが、資料事例で学ぶ BSVからの引用の図509.1に示すように、Stmt文内のfor文は2サイクルかかることに注意します。

図%%.1
図509.1 for文とwhile文

一方、while文は初期化に1サイクルかかるものの、インナーループでのチェックとアクションを1サイクルで実行できます。

for文のインナーループが2サイクルになるということは、2倍の周波数でFSMを駆動しなければならないことになります。現行では49.5MHzなので2倍では99MHzとなり、FPGAの上限に近くなってしまいます。

念のため99MHzで動作するfor文を用いたケースを合成し、正常動作を確認しましたが、タイミングクロージャや発熱等を考えると、回路はなるべく低速で回した方が望ましいです。

一方whileループであればインナーループが1サイクルで良いため、一旦for文で書いてから等価なwhile文に書き換えます


左矢前のブログ 次のブログ右矢

posted by sakurai on September 14, 2022 #508

アルゴリズム説明

アルゴリズムの中心部分を説明します。一度に変換すると、bscによるデータサイズの推定がうまく行かなかったため、ステップに分解してデータタイプのヒントを与えています。ステップに分解しても結局組み合わせ回路が合成されるため、回路オーバヘッドはありません。

      Bit#(8) xa = a[15:8];

横方向アドレスであるxaは縦方向アドレス(上位8bit)をそのまま使用します。

      Int#(10) yax = 256 - signExtend(unpack(a[7:0]));

一方、縦方向アドレスyaは横方向アドレス(下位8bit)をunpackにより整数化し、符号拡張した上で256から引きます。

      Bit#(8) ya = truncate(pack(yax));

その後unpackによりビットベクターとし、最後にtruncateで8bitベクターに戻します。データタイプ変換関数はここに掲載されています。

      if (sel) return b;
      else if (sw) return {ya, xa};
      else return a; // normal state

最後にselがtrueならb(メモリダンプFSMによるアドレス)、falseでswがtrueならxとyの入れ替え&yの反転(90°回転)、falseならオリジナルのa(ゲームFSMによるアドレス)を選択します。

実行結果

図508.1に実行結果を示します。首を左に90度傾けた上で正しく実行できました。

図%%.2
図508.1 実行結果

変更後のソース

変更したMux.bsv:

typedef Bit#(16) Addr_t;

interface Mux_ifc;
   (* prefix="" *)
   method Addr_t outp(Bool sw, Bool sel, Addr_t a, Addr_t b);
endinterface

(* synthesize, always_ready = "outp", no_default_clock, no_default_reset *)
module mkMux(Mux_ifc);
    method Addr_t outp(Bool sw, Bool sel, Addr_t a, Addr_t b);
      Bit#(8) xa = a[15:8];
      Int#(10) yax = 256 - signExtend(unpack(a[7:0]));
      Bit#(8) ya = truncate(pack(yax));
      if (sel) return b;
      else if (sw) return {ya, xa};
      else return a; // normal state
   endmethod
endmodule

変更箇所はこのアドレスの縦横入れ替えと、VRAM初期値のデータの縦横入れ替えの2点となります。後者はプログラムでも可能ですが、csvに変換した上でexcelのコピーのオプションの行列の入れ替え機能で実施しました。

追記:改良版の記事はここ


左矢前のブログ 次のブログ右矢


ページ: