Article #222

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

$M_{\mathrm{PMHF}}$の計算(9)

posted by sakurai on March 16, 2020 #222

IFRモデル

全く同様な計算をIFRモデルでも行います。同様に(2)を(2a)と(2b)に分離します(図222.1の赤矢印)。

図%%.1
図222.1 LAT2からの分岐をSPF方向とDPF1方向に分離

まず(2a)のDPF1方向への確率積分は、 $$ \begin{eqnarray} \overline{q_{\mathrm{DPF1,IFR}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{DPF1\ at\ }T_\text{lifetime}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT2\ at\ }t\cap\mathrm{IF^R\ down\ in\ }(t, t+dt]\\ & &\cap\mathrm{VSG\ of\ IF\ preventable}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF^R\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2\ at\ }t\}\\ & &\ \ \ \ \cdot\Pr\{\mathrm{LAT2\ at\ }t\}\Pr\{\mathrm{VSG\ of\ IF\ preventable}\} \end{eqnarray} \tag{222.1} $$ ここで(107.2)(107.3)より、 $$ \Pr\{\mathrm{LAT2\ at\ }t\}=\Pr\{\mathrm{IF^R\ up\ at\ }t\cap\mathrm{SM\ down\ at\ }t\}\\ =\Pr\{\mathrm{IF^R\ up\ at\ }t\}\Pr\{\mathrm{SM\ down\ at\ }t\}\\=A_{\mathrm{IF}}(t)Q_{\mathrm{SM}}(t)\tag{222.2} $$ 一方、(107.7)より、 $$ \Pr\{\mathrm{IF^R\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2\ at\ }t\}\\ =\Pr\{\mathrm{IF^R\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^R\ up\ at\ }t\}=\lambda_{\mathrm{IF}}dt\tag{222.3} $$ (222.2)、(222.3)を(222.1)に用いれば、 $$ \overline{q_{\mathrm{DPF1,IFR}}}=\frac{K_{\mathrm{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)A_{\mathrm{IF}}(t)\lambda_{\mathrm{IF}}dt \tag{222.4} $$ これに(107.8)の結果を利用すれば、 $$ (222.4)=K_{\text{IF,RF}}\beta\tag{222.5} $$

次に(2b)のSPF方向への確率積分は、IFUモデルと変わりません。SPFは、IFのフォールトがアンプリベンタブル(VSG抑止不可)な場合に起きるためです。 $$ \begin{eqnarray} \overline{q_{\mathrm{SPF(2b),IFR}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{SPF(2b)\ at\ }T_\text{lifetime}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT2\ at\ }t\cap\mathrm{IF^U\ down\ in\ }(t, t+dt]\\ & &\cap\overline{\mathrm{VSG\ of\ IF\ preventable}}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2\ at\ }t\}\\ & &\ \ \ \ \cdot\Pr\{\mathrm{LAT2\ at\ }t\}\Pr\{\overline{\mathrm{VSG\ of\ IF\ preventable}}\} \end{eqnarray} \tag{222.6} $$ 同様に(221.2)(221.3)を用いれば、 $$ (222.6)=\frac{1-K_{\text{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)R_{\mathrm{IF}}(t)\lambda_{\mathrm{IF}}dt \tag{222.7} $$ これに(104.5)の結果を利用すれば、 $$ (222.7)=(1-K_{\text{IF,RF}})\alpha\tag{222.8} $$ 以上より、IFRモデルの統合、分離方式を比較すると、表222.1のようになります。変化点を黄色で示しています。

表222.1 IFRモデルのPMHF式
(1)SPF (2)DPF1 (3)DPF2
LAT2統合 $(1-K_\text{IF,RF})\lambda_\text{IF}-(1-K_\text{IF,RF})\alpha$
(103.7)
$(1-K_\text{IF,RF})\alpha+K_\text{IF,RF}\beta$
(107.8)
$K_\text{IF,RF}\beta$
(106.4)
規格式1(1)+(2)$\dagger$ $(1-K_\text{IF,RF})\lambda_\text{IF}+K_\text{IF,RF}\beta$
規格式3(1)+(2)+(3)$\dagger$ $(1-K_\text{IF,RF})\lambda_\text{IF}+2K_\text{IF,RF}\beta$
(1)SPF (2b)SPF' (2a)DPF1 (3)DPF2
LAT2分離 $(1-K_\text{IF,RF})\lambda_\text{IF}-(1-K_\text{IF,RF})\alpha$ $(1-K_\text{IF,RF})\alpha$
(222.7)
$K_\text{IF,RF}\beta$
(222.5)
$K_\text{IF,RF}\beta$
(1)+(2b)SPF (2a)DPF1 (3)DPF2
SPF統合 $(1-K_\text{IF,RF})\lambda_\text{IF}$ $K_\text{IF,RF}\beta$ $K_\text{IF,RF}\beta$
SPF/DPF統合 $(1-K_\text{IF,RF})\lambda_\text{IF}$ $2K_\text{IF,RF}\beta$

$$ \text{ただし、} \begin{cases} \alpha:=\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{SM,MPF}})T_\text{lifetime}+K_{\mathrm{SM,MPF}}\tau]\\ \beta:=\frac{1}{2}\lambda_\text{IF}\lambda_\text{SM}\left[(1-K_\text{MPF})T_\text{lifetime}+K_\text{MPF}\tau\right]\\ K_\text{MPF}:=K_\text{IF,MPF}+K_\text{SM,MPF}-K_\text{IF,MPF}K_\text{SM,MPF} \end{cases} $$

前稿と同様、SPF統合のほうが単純な式となっています。LAT2統合において、SPFもDPF1も複雑な式でしたが、まとめ方を変えると単純な式となるため、この方が本質だと考えます。

一般式

表222.1より、2020年RAMS論文で示したように一般式は以下のようになります。 $$M_\text{PMHF}=(1-K_\text{IF,RF})\lambda_\text{IF}+2K_\text{IF,RF}\beta\\ =(1-K_\text{IF,RF})\lambda_\text{IF}+K_\text{IF,RF}\lambda_\text{IF}\lambda_\text{SM}\left[(1-K_\text{MPF})T_\text{lifetime}+K_\text{MPF}\tau\right]$$

また、$K_\text{IF,MPF}=0$のとき、すなわち、IFRモデルにおいて、IFの2nd SMが存在せずアンリペアラブルとなるときは$K_\text{MPF}=K_\text{SM,MPF}$となるため、$\beta=\alpha$となり、当然ですがIFRモデルはIFUモデルと同一の式となります。

冗長構成

IFRモデルはIFもSMもリペアラブルということは冗長構成により$K_\text{IF,RF}=1$となるため、それを適用したものを表222.2に示します。SPFが0となるため、LAT2統合でもSPF統合でも

  • $M_\text{PMHF,SPF}=0$
  • $M_\text{PMHF,DPF1}=\beta$

となり変わりません。

表222.2 冗長構成のIFRモデルのPMHF式$(K_\text{IF,RF}=1)$
(1)SPF (2)DPF1 (3)DPF2
LAT2統合 $0$ $\beta$ $\beta$
規格式1(1)+(2)$\dagger$ $\beta$
規格式3(1)+(2)+(3)$\dagger$ $2\beta$
(1)SPF (2b)SPF' (2a)DPF1 (3)DPF2
LAT2分離 $0$ $0$ $\beta$ $\beta$
(1)+(2b)SPF (2a)DPF1 (3)DPF2
SPF統合 $0$ $\beta$ $\beta$
SPF/DPF統合 $0$ $2\beta$


$\dagger$規格式1: 規格第1版 Part 10-8.3.3の第1式(ブログの図104.2)の条件=IFが後にフォールトする場合。DPF2はSMが後にフォールトする場合なので対象外
$\dagger$規格式3: 規格第1版 Part 10-8.3.3の第3式(ブログの図105.2)の条件=IF, SMのフォールトの順を問わない場合


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax. If you include an ad such as http://, it will be invalidated by our AI system.

Please enter the numbers as they are shown in the image above.