Posts Issued on May 9, 2024

Pongと強化学習 (16)

posted by sakurai on May 9, 2024 #793

特徴量からsやaへの関係を聞いてみます。


状態$s$とアクション$a$は、強化学習において特徴量と密接に関連しています。具体的には、特徴量は環境からの生の観測(例えば、Pongゲームの画像フレーム)を加工・抽出した情報であり、これらが状態$s$の表現として機能します。そして、この状態$s$を基にして、アクション$a$の選択が行われます。以下に、特徴量と状態$s$、アクション$a$の関係を詳しく説明します。

特徴量から状態$s$へ

  • 特徴量抽出: 強化学習におけるエージェントは、環境から得られる観測(例えば、Pongゲームの場合はゲームの画面)を直接扱うのではなく、これを加工・抽出して特徴量を得ます。CNNのようなディープラーニングモデルは、画像の生ピクセルから有用な特徴(ボールの位置、パドルの位置など)を自動で抽出する能力があります。
  • 状態表現: 抽出された特徴量は、ゲームの現在の状態を表す状態ベクトル$s$としてまとめられます。この状態ベクトルは、ゲームの「現在地図」のようなものであり、エージェントが次にどのようなアクションを取るべきかを決定するための基礎となります。

状態$s$からアクション$a$へ

  • ポリシー関数: 強化学習モデルは、ポリシー関数(方針)を用いて、現在の状態$s$に基づいて取るべきアクション$a$を選択します。このポリシーは、一般にモデルの学習によって得られるもので、状態$s$をアクション$a$にマッピングする関数です。
  • 意思決定: 状態$s$における特徴量の情報をもとに、ポリシー関数は最適と考えられるアクション$a$を選択します。Pongゲームでは、このアクションはパドルを上に移動させる、下に移動させる、または停止させるという選択になります。

特徴量、状態$s$、アクション$a$の関係性

このプロセスを通じて、特徴量は状態$s$の表現を形成し、この状態$s$に基づいてアクション$a$が決定されるという流れが完成します。すなわち、特徴量は環境の生の観測からエージェントが意思決定を行うための「言語」に変換される役割を持っています。エージェントのパフォーマンスは、この特徴量の質と、それをどのように状態$s$とアクション$a$に変換するかに大きく依存します。適切な特徴量を抽出し、それを効果的に状態とアクションにマッピングする能力は、強化学習モデルが成功するための鍵となります。


左矢前のブログ 次のブログ右矢