Posts Issued on May 10, 2024

Pongと強化学習 (17)

posted by sakurai on May 10, 2024 #794

sとaの関係を聞いてみます。


アクション$a$と状態$s$は、強化学習において密接に関連しています。CNNを使用して特徴量を抽出し、その情報を基にして最適なアクションを選択する過程を具体的に見てみましょう。

状態$s$の役割

  • 特徴抽出: CNNはPongゲームの画像(フレーム)から、ボールの位置、パドルの位置、ボールの速度などの重要な特徴を抽出します。これらの特徴は、CNNの出力として得られる特徴ベクトルにエンコードされ、ゲームの現在の状態$s$を表します。
  • 状態表現: 強化学習モデルは、この特徴ベクトル(状態$s$の表現)を入力として受け取り、ゲームの現在の状況を理解します。状態$s$は、エージェントが次に取るべき最適な行動を決定するための情報を提供します。

アクション$a$の選択

  • ポリシー決定: 強化学習モデル(例えばQ学習やDQN)は、現在の状態$s$に基づいて、取るべき最適なアクション$a$を決定します。この過程では、状態$s$からアクション$a$へのマッピング(ポリシー)が学習されます。
  • アクションの選択: 学習されたポリシーに従って、エージェントは上に移動、下に移動、停止のいずれかのアクションを選択します。このアクションは、ゲーム内でのパドルの動きを制御し、次の状態$s'$へと導きます。

アクションと状態の相互作用

  • 状態の遷移: エージェントがアクション$a$を取ると、ゲームの状態は変化し、新しい状態$s'$に遷移します。例えば、パドルを上に移動するアクションを取ると、パドルの位置が変わり、それに伴いゲームの状態も更新されます。
  • 継続的な学習: 新しい状態$s'$においても、同様にCNNを用いて特徴を抽出し、強化学習モデルが最適なアクションを再び選択します。このプロセスはゲームが終了するまで繰り返され、エージェントは経験を通じて最適なポリシーを学習します。

結論

アクション$a$と状態$s$の関係は、強化学習における意思決定プロセスの中心です。CNNを用いてゲームの画像から状態$s$を表す特徴量を抽出し、これを基にして強化学習モデルがアクション$a$を選択します。この相互作用を通じて、エージェントはゲームのプレイを改善し、最終的には目標(例えば、得点の最大化やボールを長く保持すること)を達成するための最適な戦略を学習します。


左矢前のブログ 次のブログ右矢