Posts Issued in December, 2023

Pongの作成 (14)

posted by sakurai on December 8, 2023 #712

QSPIプログラミング

FPGAプログラミングにはVivadoやPCやUSBケーブル等が必要ですが、電源を投入してアプリケーションをすぐに動作させるためにはCmodA7ボード上のQSPI Flashに書き込む必要があります。基本的には過去記事:Artyで実施したのと同じ手順ですが、異なる点だけを示します。

  • Binファイルの作成: 過去記事どおりに実施します。
  • Binファイルの焼きこみ: 選択するFlashの型格に注意します。以下の図のとおり、mx25I3273f-spi-x1_x2_x4を選択します。間違えて異なる型格を指定すると、Vivadoがエラーを出力し正しい型各を教えてくれます。

図%%.1
図712.1 Flash選択画面

左矢前のブログ 次のブログ右矢

Pongの作成 (13)

posted by sakurai on December 7, 2023 #711

パドル動作

完成したADCとパドルVRの連携を以下の動画に示します。パドルの描画アルゴリズムは

  • 新しいADCの値を取得
  • ADCの値を要素8の移動平均化(フラつき防止のため)
  • 閾値4と移動値(ADC値-現在値)を比較し、閾値を超えていたら移動(フラつき防止のため)
  • 移動値を座標制限内にクリッピング
  • 移動の際には現在のパドル像を消去(ゴミ残り防止のため)
  • 前回値と同じであれば書き換えをしない(チラつき防止のため)

図%%.1
図711.1 パドル動作

ボール動作

ボールがパドルと衝突する判定は、ボール座標のVRAMデータを読み出して行います。右パドルのVRAMデータは3であるため、移動のたびにボール座標を読み出し3であれば衝突と判断します。

パドルのy座標範囲は0~25であり、これを①0~5,②6~12、③13~19、④20~25の4領域に分割します。①に衝突した場合は-45°の角度で反射し、②は約-18.4°の角度で反射します。これをxとyの増分であるdx, dyに変換すれば、-45度の場合はdx=1, dy=-1であり、-18.4度の場合はdx=3, dy=-1です。

図%%.2
図711.2 ボール衝突動作

左矢前のブログ 次のブログ右矢

Pongの作成 (12)

posted by sakurai on December 6, 2023 #710

実験によるフィードバック

VRを実際にADCに接続してJTAG経由で測定したところ、VRと付属回路の電圧値は0.158~0.711Vとなりました。LTSpiceの値と異なったのは手持ちの抵抗を付けたからかもしれません。

また、パラメータ化したa, bはデフォルト値のa=105, b=90で特に違和感はありませんでした。特に可変範囲は90°としました。これは全回転角が300°でリニアの場合ですが実際にはそうではなく、使用角度bは45°くらいとなりました。

ADCの出力をちょうどy座標の動作範囲にクリップしていましたが、実験の結果、パドルが端にくっつかない問題がありました。そのためADCの出力を、動作範囲よりも5%ほど大きめにして座標計算でもクリップすることにします。

さらにパドル消去アルゴリズムを変更したため、パドルの大きさも多少変えました。従って、再度設計計算を行います。一度方式としては確定しているため、数値を少々変更するだけです。変化点をマーカで表示します。ピンク前記事との変化点であり、ブルーは最終結果としてソースコードに入れる値です。

  • VRの全角度は300°
  • VRの有効角はパラメータ化し、開始角a[°] (デフォルト値a=105)、範囲b[°] (デフォルト値b=90)
  • VRの全角度の際のADC入力電圧は測定結果より、0.16~0.71[V]

図%%.1
図710.1 レベルダイア

再設計計算

これらより、ADC入力電圧は開始角$a$の値を$V_\text{a}$、終了角$a+b$の値を$V_\text{a+b}$として、 $\require{color} \definecolor{pink}{rgb}{1.0,0.8,1.0} \definecolor{blue}{rgb}{0.8,0.8,1.0}$

  • $V_\text{L}=\colorbox{pink}{0.16}$, $V_\text{H}=\colorbox{pink}{0.71}$
  • $V_\text{range}=V_\text{H}-V_\text{L}=\colorbox{pink}{0.55}$
  • $V_\text{a}=\frac{V_\text{range}}{300}a+V_\text{L}$
  • $V_\text{a+b}=\frac{V_\text{range}}{300}(a+b)+V_\text{L}$

次にAD変換後のデータDは入力全範囲0~1[V]を4096分割する。開始角の値を$D_\text{a}$、終了角の値を$D_\text{a+b}$として

  • $D_\text{a}=4096V_\text{a}=\frac{4096V_\text{range}}{300}a+4096V_\text{L}=\colorbox{pink}{7.509}a+\colorbox{pink}{655.4}$
  • $D_\text{a+b}=4096V_\text{a+b}=\colorbox{pink}{7.509}(a+b)+\colorbox{pink}{655.4}$
  • $D_\text{range}=D_\text{a+b}-D_\text{a}=\colorbox{pink}{7.509}b$

一方、y座標の制約は以下のとおりであり、$y_\text{top}$(上限$y_\text{max}$+5%)と$y_\text{bottom}$(下限$y_\text{min}$-5%)の値でクリッピング。

  • $y_\text{min}=\colorbox{pink}{44}, y_\text{max}=\colorbox{pink}{219}, Paddle_\text{h}=\colorbox{pink}{26}$
  • $y_\text{bottom}=y_\text{min}-7=\colorbox{pink}{37}, y_\text{top}=(y_\text{max}-Paddle_\text{h})+7=\colorbox{pink}{200}$
  • $y_\text{range}=y_\text{top}-y_\text{bottom}=200-37=\colorbox{pink}{163}$

これらからy座標を求めると、ADCのデータを$D$とすれば、

  • $y=\frac{y_\text{range}}{D_\text{range}}(D-D_\text{a})+y_\text{bottom}=\frac{\colorbox{pink}{163}}{\colorbox{pink}{7.509}b}D-\frac{\colorbox{pink}{163}}{b}a-\frac{\colorbox{pink}{163}\cdot\colorbox{pink}{655.4}}{\colorbox{pink}{7.509}b}+\colorbox{pink}{37}\\ =\frac{\colorbox{pink}{347.3}}{b\ll4}D-\frac{\colorbox{pink}{163}}{b}a-\frac{\colorbox{pink}{14225}}{b}+\colorbox{pink}{37}=\frac{\colorbox{blue}{347}D-\colorbox{blue}{2608}a-\colorbox{blue}{227607}}{b\ll4}+\colorbox{blue}{37}$

y式中のシフトは固定小数点演算を行うために分母分子を16倍しているものです。さらに最小値$D_\text{a}$、最大値$D_\text{a+b}$で入力ADCデータのクリッピングを行います。

  • $D_\text{a}=\colorbox{pink}{7.509}a+\colorbox{pink}{655.4}=(\colorbox{blue}{120}a+\colorbox{blue}{10486})\gg4$
  • $D_\text{a+b}=\colorbox{pink}{7.509}(a+b)+\colorbox{pink}{655.4}=(\colorbox{blue}{120}(a+b)+\colorbox{blue}{10486})\gg4$

以上より、完成したBSVコードの変更点のみを以下に示します。

クリッピング値計算部分

            // 座標の下限-5%と上限+5%に対応するADC値の計算
            Bit#(20) adcMinValue = (120 * extendedA + 10486) >>4;     // Min = 7.509A + 655.4
            Bit#(20) adcMaxValue = (120 * (extendedA + extendedB) + 10486) >> 4; // Max = 7.509(A+B) + 655.4

ADCからy値計算部分

            Bit#(24) coordinate = ((zeroExtend(clippedAdcValue) * 347
                   - zeroExtend(extendedA) * 2608 - 227607)
                                   / zeroExtend(extendedB) >> 4) + 37;

変換器部分はこのとおりですが、FSM中でのパドルの可動範囲$y_\text{min}=\colorbox{blue}{44}$、$y_\text{max}-Paddle_\text{h}=219-26=\colorbox{blue}{193}$でクリッピングすることを忘れないように注意します。


左矢前のブログ 次のブログ右矢

Pongの作成 (11)

posted by sakurai on December 5, 2023 #709

CmodA7からPMODへのインタフェース基板のため、CmodA7toPMODV5と名付けました。そのGerber図が図709.1であり、JLCPCBに依頼していた基板が届きました(図709.2)。

図%%.1
図709.1 CmodA7toPMODV5ボードガーバー図

図%%.2
図709.2 CmodA7toPMODV5基板

早速組み立てて動作させたところ、デバッグした後に正常に動作しました。図はPMODVGAインタフェース、PMOD I2Sオーディオインターフェース、PMODジョイスティックスイッチインターフェースの3つを接続した図です。外部電源5VでもUSBのみの電力でも動作するようです。

図%%.3
図709.3 CmodA7toPMODV5完成

左矢前のブログ 次のブログ右矢

Pongの作成 (10)

posted by sakurai on December 4, 2023 #708

You

AとBはゲームを試作してみないと決定できませんが、決める方法は?

Bluespec Expert
AとBがゲームの試作段階で決定されるというのは理解しました。AとBは、ゲームのデザインやユーザーインターフェースの要件に基づいて変わる可能性があるため、試作を通じてこれらの値を最適化するのは良いアプローチです。

試作段階では、さまざまなAとBの値を試して、ゲームプレイに最も適した設定を見つけることが重要です。この過程で以下の点を考慮すると良いでしょう:

 1. ユーザーインターフェース:
プレイヤーが可変抵抗器のツマミをどのように操作するか、そしてその操作がゲーム上でどのように反映されるかを考慮します。

 2. 応答性:
ツマミの操作に対するゲームの応答性を評価します。ツマミを少し回すだけで大きく座標が変化するか、またはより細かい調整が可能かを検討します。

 3, プレイの難易度:
AとBの設定はゲームの難易度に直接影響を与える可能性があります。簡単すぎるか難しすぎるかを評価し、プレイヤーにとって楽しく挑戦的なバランスを見つけます。

 4, テストとフィードバック:
実際のプレイヤーによるテストを行い、彼らのフィードバックをもとに、AとBの最適な値を決定します。

試作プロセスが完了し、AとBの値が決定されたら、提供された変換式を使用して、ADCの値からゲーム画面上の座標への変換を実装できます。これにより、ゲームの操作性とプレイヤーの体験を最適化することができるでしょう。


左矢前のブログ 次のブログ右矢

Pongの作成 (9)

posted by sakurai on December 1, 2023 #707

You

正解です。それではA°のときが画面上の座標44に相当し、A+B°のときが座標186のときに相当するとき、ある角度A+x°のときの座標を計算してください。

Bluespec Expert
与えられた条件に基づいて、角度A+x°のときの座標を計算するためには、角度と座標の間の線形関係を確立する必要があります。A°が座標44に、A+B°が座標186に対応するとします。この関係から、角度と座標の変換式を導き出し、それを使って任意の角度A+x°のときの座標を求めます。

  1. 角度と座標の変換係数の計算:

    • 角度の変化量は B、対応する座標の変化量は 186 - 44 です。
    • したがって、1°あたりの座標の変化量は (186 - 44) / B です。
  2. 任意の角度A+x°の座標の計算:

  • A°のときの座標は44なので、A+x°のときの座標は 44 + x * ((186 - 44) / B) となります。

この計算には、角度の増加量 x とBの具体的な値が必要です。しかし、これらの値が提供されていないため、具体的な座標を計算することはできません。もしこれらの値を提供いただければ、具体的な座標を計算することが可能です。

You

ゲーム中にxは毎秒変化するから具体的な値は与えられません。以上から、ADCの値から座標値へ変換する式を求めてください。

Bluespec Expert
ADCの値からゲーム画面上の座標値への変換式は以下の通りです:

$$座標 = 44 + ((((\text{adc_value} / 4096 - 0.2) / 0.74) * 300 - A) * ((186 - 44) / B))$$

この式では、まずADC値 (adc_value) から対応する角度への変換を行い、その後その角度を基にして座標値に変換しています。ただし、この式はBの具体的な値に依存します。Bは角度AからA+Bまでの変化量を示しており、これによって角度と座標の関係が決定されます。

You

事前に演算できる定数をまとめてください。

Bluespec Expert
確かに、定数同士の除算も事前に計算して定数として扱うことができます。式内のすべての定数同士の乗算と除算を事前に行い、式をさらに簡略化してみましょう。式は次のようになります:

$$座標 = 44 + \frac{\text{adc_value} \times 14.05}{B} - \frac{11513.36}{B} - \frac{A \times 142}{B}$$

これで、式は定数計算をすべて事前に行った状態で、より簡略化されています。これを使って、特定の $\text{adc_value}$、$A$、$B$ の値に対する座標を計算できます。


ChatGPTに計算してもらった式を固定小数点演算化するために分母分子を16倍します。すると、 $$座標 = 44 + \frac{\text{adc_value} \times 225}{16B} - \frac{184214}{16B} - \frac{A \times 2272}{16B}$$ となり、前記事の式と有効数字5桁で一致しました。


左矢前のブログ 次のブログ右矢