Posts Tagged with "average PUD"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.
posted by sakurai on March 3, 2021 #372

LAT1DPFの平均PUDの計算

最後にLAT1からDPFへの平均PUDを計算します。

図%%.1
図372.1 LAT1DPFの遷移(d)

LAT1からDPFへの遷移(d)の平均PUDは、 $$ \begin{eqnarray} \overline{q_{\mathrm{DPF(d),IFR}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{DPF\ via\ (d)\ at\ }T_\text{lifetime}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT1\ at\ }t\cap\mathrm{SM\ down\ in\ }(t, t+dt)\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{SM\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT1\ at\ }t\}\\ & &\ \ \ \ \cdot\Pr\{\mathrm{LAT1\ at\ }t\} \end{eqnarray} \tag{372.1} $$ 同様に表368.1より、IF preventableのdown状態は(5)及び(7)であることから、 $$ \Pr\{\mathrm{IF^R_\text{prev}\ down\ at\ }t\}\\ =K_\text{IF,RF}\color{red}{(1-K_\text{IF,det})}\left[(1-K_\text{IF,MPF})F_\text{IF}(t)+K_\text{IF,MPF}F_\text{IF}(u)\right]\\ =K_\text{IF,RF}\color{red}{(1-K_\text{IF,det})}Q_\text{IF}(t) \tag{372.2} $$ となります。よって、 $$ \Pr\{\mathrm{LAT1\ at\ }t\}=\Pr\{\mathrm{IF^R_{prev}\ down\ at\ }t\cap\text{SM up at }t\}\\ =K_\text{IF,RF}\color{red}{(1-K_\text{IF,det})}\left[(1-K_\text{IF,MPF})F_\text{IF}(t)+K_\text{IF,MPF}F_\text{IF}(u)\right]A_{\mathrm{SM}}(t)\\ =K_\text{IF,RF}\color{red}{(1-K_\text{IF,det})}Q_\text{IF}(t)A_{\mathrm{SM}}(t) \tag{372.3} $$ と書けます。

一方、 $$ \require{cancel} \Pr\{\mathrm{SM\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT1\ at\ }t\}\\ =\Pr\{\mathrm{SM\ down\ in\ }(t, t+dt]\ |\ \mathrm{SM\ up\ at\ }t\cap\bcancel{\mathrm{IF^R_{prev}\ down\ at\ }t}\}\\ =\Pr\{\mathrm{SM\ down\ in\ }(t, t+dt]\ |\ \mathrm{SM\ up\ at\ }t\}=\lambda_{\mathrm{SM}}dt\tag{372.4} $$ であるから、(372.1)は、(106.4)を用いて、 $$ \begin{eqnarray} (372.1)&=&\frac{K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\left[(1-K_{\mathrm{IF,MPF}})F_{\mathrm{IF}}(t)+K_{\mathrm{IF,MPF}}F_{\mathrm{IF}}(u)\right]\\ & &\cdot\left[(1-K_\text{SM,MPF})f_\text{SM}(t)+K_\text{SM,MPF}f_\text{SM}(u)\right]dt\\ &\approx&\frac{K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}}{2}\lambda_{\mathrm{SM}}\lambda_{\mathrm{IF}}\left[(1-K_{\mathrm{MPF}})T_\text{lifetime}+K_{\mathrm{MPF}}\tau\right]\\ &=&K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}\beta, \end{eqnarray}\tag{372.5} $$

$$ ただし、\begin{cases} \begin{eqnarray} u&:=&t\bmod\tau,\\ \beta&:=&\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{MPF}})T_\text{lifetime}+K_{\mathrm{MPF}}\tau],\\ K_{\mathrm{MPF}}&:=&K_{\mathrm{IF,MPF}}+K_{\mathrm{SM,MPF}}-K_{\mathrm{IF,MPF}}K_{\mathrm{SM,MPF}}\\ \end{eqnarray}\end{cases} $$

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。


左矢前のブログ 次のブログ右矢

posted by sakurai on March 2, 2021 #371

LAT2DPFの平均PUDの計算

LAT2DPFの遷移(c)の平均PUDを計算します。

図%%.1
図371.1 LAT2DPF1の遷移(c)

LAT2の状態のうち、(VSG of)IF preventable部分について考えます。 $$ \begin{eqnarray} \overline{q_\mathrm{DPF(c),IFR}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{DPF\ via\ (c)\ at\ }T_\text{lifetime}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT2_\text{prev}\ at\ }t\cap\mathrm{IF^R\ down\ in\ }(t, t+dt]\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF^R\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2_\text{prev}\ at\ }t\}\\ & &\ \ \ \ \cdot\Pr\{\mathrm{LAT2_\text{prev}\ at\ }t\} \end{eqnarray} \tag{371.1} $$ 同様に、表368.1よりIF preventableのup状態は従来 (4),(6)及び(8)でしたが、新たに(3)がfaultlessとして加わる ことにより、 $$ \Pr\{\mathrm{IF^R_\text{prev}\ up\ at\ }t\}\\ =K_\text{IF,RF}\color{red}{K_\text{IF,det}}\left[R_\text{IF}(t)+F_\text{IF}(t)\right]+K_\text{IF,RF}\color{red}{(1-K_\text{IF,det})}\left[(1-K_\text{IF,MPF})R_\text{IF}(t)+K_\text{IF,MPF}R_\text{IF}(u)\right]\\ =K_\text{IF,RF}\color{red}{K_\text{IF,det}}+K_\text{IF,RF}\color{red}{(1-K_\text{IF,det})}A_\text{IF}(t) \tag{371.2} $$ となります。よって、SM1のdownも含めれば、 $$ \Pr\{\mathrm{LAT2_\text{prev}\ at\ }t\}=\Pr\{\mathrm{IF^R_\text{prev}\ up\ at\ }t\cap\mathrm{SM\ down\ at\ }t\}\\ =\left[K_\text{IF,RF}\color{red}{K_\text{IF,det}}+K_\text{IF,RF}\color{red}{(1-K_\text{IF,det})}A_\text{IF}(t)\right]Q_\text{SM}(t)\tag{371.3} $$ となります。

一方、(107.7)より、 $$ \require{cancel} \Pr\{\mathrm{IF^R\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2\ at\ }t\}\\ =\Pr\{\mathrm{IF^R\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^R_\text{prev}\ up\ at\ }t\cap\bcancel{\text{SM down at }t}\}\\ =\Pr\{\mathrm{IF^R\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^R\ up\ at\ }t\}=\lambda_\mathrm{IF}dt\tag{371.4} $$ (371.3)、(371.4)を(371.1)に用いれば、 $$ \begin{eqnarray} (371.1)&=&\frac{K_\mathrm{IF,RF}\color{red}{K_\text{det}}\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}[(1-K_\mathrm{SM,MPF})F_\mathrm{SM}(t)+K_\mathrm{SM,MPF}F_\mathrm{SM}(u)]dt,\\ & &+\frac{K_\mathrm{IF,RF}\color{red}{(1-K_\text{IF,det})}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}[(1-K_\mathrm{SM,MPF})F_\mathrm{SM}(t)+K_\mathrm{SM,MPF}F_\mathrm{SM}(u)]\\ & &\cdot\left[(1-K_\mathrm{IF,MPF})f_\mathrm{IF}(t)+K_\mathrm{IF,MPF}f_\mathrm{IF}(u)\right]dt\\ & &ただし、u:=t\bmod\tau\\ \end{eqnarray}\tag{371.5} $$ よって、積分公式(5)及び(107.8)より $$ \begin{eqnarray} (371.5)&\approx& K_{\text{IF,RF}}\color{red}{K_\text{IF,det}}\alpha+K_{\text{IF,RF}}\color{red}{(1-K_\text{IF,det})}\beta,\\ ただし、& &\alpha:=\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{SM,MPF}})T_\text{lifetime}+K_{\mathrm{SM,MPF}}\tau],\\ & &\beta:=\frac{1}{2}\lambda_\mathrm{IF}\lambda_\mathrm{SM}[(1-K_\mathrm{MPF})T_\text{lifetime}+K_\mathrm{MPF}\tau],\\ & &K_\mathrm{MPF}:=K_\mathrm{IF,MPF}+K_\mathrm{SM,MPF}-K_\mathrm{IF,MPF}K_\mathrm{SM,MPF} \end{eqnarray} \tag{371.6} $$

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。


左矢前のブログ 次のブログ右矢

posted by sakurai on March 1, 2021 #370

LAT2SPFの平均PUDの計算

次にLAT2からSPFの遷移(b)の平均PUDを計算します。この確率積分も、non preventable部分であるため、MPF detectedの変更の影響を受けません。

図%%.1
図370.1 LAT2SPFの遷移(b)

LAT2の状態のうち、(VSG of)IF non preventable部分について考えます。 $$ \begin{eqnarray} \overline{q_{\mathrm{SPF(b),IFR}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{SPF\ via\ (b)\ at\ }T_\text{lifetime}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT2_\overline{prev}\ at\ }t\cap\mathrm{IF^U\ down\ in\ }(t, t+dt]\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2_\overline{prev}\ at\ }t\}\\ & &\ \ \ \ \cdot\Pr\{\mathrm{LAT2_\overline{prev}\ at\ }t\} \end{eqnarray} \tag{370.1} $$ ここで、表368.1より、IFについてはIF non preventableのupは(2)であるため(369.2)を用い、SMのdownについては(9)+(11)は $$ Q_\text{SM}(t):=(1-K_\text{SM,MPF})F_\text{SM}(t)+K_\text{SM,MPF}F_\text{SM}(u), \\ s.t.\ \ u:=t\bmod\tau $$ を用いれば、 $$ \Pr\{\mathrm{LAT2_\overline{prev}\ at\ }t\}=\Pr\{\mathrm{IF^U_\overline{prev}\ up\ at\ }t\cap\mathrm{SM\ down\ at\ }t\}\\ =(1-K_\text{IF,RF})R_{\mathrm{IF}}(t)Q_{\mathrm{SM}}(t)\tag{370.2} $$ 一方、(103.4)より、 $$ \require{cancel} \Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2_\overline{prev}\ at\ }t\}\\ =\Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^U_\overline{prev}\ up\ at\ }t\cap\bcancel{\text{SM down at}t}\}\\ =\Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^U\ up\ at\ }t\}\\ =\lambda_{\mathrm{IF}}dt\tag{370.3} $$ よって、(370.1)式は、 $$ \begin{eqnarray} (370.1)&=&\frac{1-K_{\text{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)R_{\mathrm{IF}}(t)\lambda_{\mathrm{IF}}dt\\ &=&\frac{1-K_{\text{IF,RF}}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\text{SM}(t)f_\mathrm{IF}(t)dt\\ \end{eqnarray} \tag{370.4} $$ これに(104.5)の結果を利用すれば、 $$ (370.4)\approx\frac{1-K_{\text{IF,RF}}}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}\left[(1-K_{\mathrm{SM,MPF}})T_\text{lifetime}+K_{\mathrm{SM,MPF}}\tau\right]\\ \approx(1-K_{\text{IF,RF}})\alpha,\\ ただし、\alpha:=\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{SM,MPF}})T_\text{lifetime}+K_{\mathrm{SM,MPF}}\tau]\tag{370.5} $$

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。


左矢前のブログ 次のブログ右矢

posted by sakurai on February 26, 2021 #369

OPRSPFの平均PUDの計算

従来はMPF detectedをMPF latent扱いにしていたものを、non faultyに変更しました。そもそもMPFの意味はVSG preventableなIFのフォールト、すなわち1st SMによりVSGの抑止を受けたIFのフォールトであるため、SPFの計算に影響はありません。SPFは、IFのフォールトがnon preventable(VSG抑止不可)な場合に起きるためです。 従って、以下は前稿#103と同様です。

OPRからSPFへの平均PUD(66.13)を計算します。

図%%.1
図369.1 OPRSPFの遷移(a)

OPRからSPFへの平均PUDは、 $$ \begin{eqnarray} \overline{q_{\mathrm{SPF(a),IFU}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{SPF\ via\ (a)\ at\ }T_\text{lifetime}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{OPR_\overline{prev}\ at\ }t\cap\mathrm{IF\ down\ in\ }(t, t+dt]\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF\ down\ in\ }(t, t+dt]\ |\ \mathrm{OPR_\overline{prev}\ at\ }t\}\\ & &\ \ \ \ \cdot\Pr\{\mathrm{OPR_\overline{prev}\ at\ }t\} \end{eqnarray} \tag{369.1} $$

ここで、表368.1より、IF non preventableのupは(2)であるため、 $$ \Pr\{\mathrm{IF^U_\overline{prev}\ up\ at\ }t\}=(1-K_\text{IF,RF})R_\mathrm{IF}(t)\tag{369.2} $$ また、SMのupは(10)+(12)の場合であり、 $$ A_\text{SM}(t):=(1-K_\text{SM,MPF})R_\text{SM}(t)+K_\text{SM,MPF}R_\text{SM}(u), \\ s.t.\ \ u:=t\bmod\tau $$ を用いれば、 $$ \begin{eqnarray} \Pr\{\mathrm{OPR_\overline{prev}\ at\ }t\}&=&\Pr\{\mathrm{IF^U_\overline{prev}\ up\ at\ }t\cap\mathrm{SM\ up\ at\ }t\}\\ &=&(1-K_\text{IF,RF})R_\mathrm{IF}(t)A_\mathrm{SM}(t)\end{eqnarray}\tag{369.3} $$ 一方、(369.1)の右辺積分中の条件付き確率式は、 $$ \require{cancel} \Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{OPR_\overline{prev}\ at\ }t\}\\ =\Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^U_\overline{prev}\ up\ at\ }t\cap\bcancel{\text{SM up at }t}\}\\ =\Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^U\ up\ at\ }t\}=\lambda_\mathrm{IF}dt \tag{369.4} $$ よって平均PUDは、 $$ \overline{q_{\mathrm{SPF(a),IFU}}}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}(1-K_\mathrm{IF,RF})R_\mathrm{IF}(t)A_\mathrm{SM}(t)\lambda_\mathrm{IF}dt \tag{369.5} $$ (103.6)の結果を用いて、 $$ \begin{eqnarray} (369.5)&\approx&(1-K_\mathrm{IF,RF})\lambda_\mathrm{IF}-\frac{1-K_\mathrm{IF,RF}}{2}\lambda_\mathrm{IF}\lambda_\mathrm{SM}[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}\tau]\\ &=&(1-K_\mathrm{IF,RF})\lambda_\mathrm{IF}-(1-K_\mathrm{IF,RF})\alpha,\\ & &\text{ただし、} \alpha:=\frac{1}{2}\lambda_\mathrm{IF}\lambda_\mathrm{SM}[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}\tau] \end{eqnarray} \tag{369.6} $$

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。


左矢前のブログ 次のブログ右矢

posted by sakurai on February 25, 2021 #368

新たに導入したKパラメータ$K_\text{det}$((355.1)式)により、一つめのIFのフォールトとそれによる状態の場合分けをし信頼度・不信頼度を求めたものを、表368.1に示します。

表368.1 一つめのIFのフォールトの場合分けした信頼度・不信頼度
Non preventable
$1-K_\text{IF,RF}$
Faulty
$(1-K_\text{IF,RF})F_\text{IF}(t)$
(1) IF down=RF
Faultless
$(1-K_\text{IF,RF})R_\text{IF}(t)$
(2) IF up
Preventable
$K_\text{IF,RF}$
SM1 detectable
$K_\text{IF,det}$
Faulty
$K_\text{IF,RF}K_\text{IF,det}F_\text{IF}(t)$
(3) IF down=LF⇒up
Faultless
$K_\text{IF,RF}K_\text{IF,det}R_\text{IF}(t)$
(4) IF up
SM1 undetectable
$1-K_\text{IF,det}$
SM2 detectable
$K_\text{IF,MPF}$
Faulty
$K_\text{IF,RF}(1-K_\text{IF,det})K_\text{IF,MPF}F_\text{IF}(u)$
(5) IF down=LF
Faultless
$K_\text{IF,RF}(1-K_\text{IF,det})K_\text{IF,MPF}R_\text{IF}(u)$
(6) IF up
SM2 undetectable
$1-K_\text{IF,MPF}$
Faulty
$K_\text{IF,RF}(1-K_\text{IF,det})(1-K_\text{IF,MPF})F_\text{IF}(t)$
(7) IF down=LF
Faultless
$K_\text{IF,RF}(1-K_\text{IF,det})(1-K_\text{IF,MPF})R_\text{IF}(t)$
(8) IF up

$s.t.\ \ u:=t\bmod\tau$
◆色分け:
Faultless, フォールト無し
Faulty, フォールトする
FaultyをFaultlessに変更
Faultyだが定期修理される

規格ではKパラメータは$K_\text{RF}$及び$K_\text{MPF}$しかなく、SMによる検出は、1st SMも2nd SMも一緒くたになっていました。これだと冗長系を扱えないため、弊社は2017年に$K_\text{det}$を導入しました。弊社は一貫してKパラメータは確率的に決まる定数ではないことを主張してきました。VSG抑止、1st SMによる検出、2nd SMによる検出のいずれもアーキテクチャ的に割合がpredeterminedとなっていると考えます。

偶数番号は全てFaultlessであり、up状態です。奇数番号はFaulty、すなわちフォールト生起状態ですが、downとは限りません。(1)はRF(Residual Fault)、(3)は 従来はLF(Latent Fault)、今回は永久up状態、 (5)及び(7)はLF(Latent Fault)です。(5)及び(6)においてはSM2(2nd SM)によって検出されたフォールトは周期的に修理されるため、時刻tではなく$u(:=t \bmod \tau)$で表されます。(5)は修理されるLFなので露出時間は$\tau$ですが、(7)は修理されないLFなので露出時間は車両寿命です。

ついでに、以下は従来と変わりはありませんが、SMの信頼度・不信頼度の表です。$K_\text{SM,RF}, K_\text{SM,det}$が存在しないので、$K_\text{SM,MPF}$のみの場合分けとなります。

表368.2 一つめのSMのフォールトの場合分けした信頼度・不信頼度
SM2 detectable
$K_\text{SM,MPF}$
Faulty
$K_\text{SM,MPF}F_\text{SM}(u)$
(9) SM down=LF
Faultless
$K_\text{SM,MPF}R_\text{SM}(u)$
(10) SM up
SM2 undetectable
$1-K_\text{SM,MPF}$
Faulty
$(1-K_\text{SM,MPF})F_\text{SM}(t)$
(11) SM down=LF
Faultless
$(1-K_\text{SM,MPF})R_\text{SM}(t)$
(12) SM up

$s.t.\ \ u:=t\bmod\tau$
◆色分け:
Faultless, フォールト無し
Faulty, フォールトする
Faultyだが定期修理される

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。

左矢前のブログ 次のブログ右矢

posted by sakurai on February 24, 2021 #367

再検討にあたっては計算の容易さから、図222.1を参照して、$\mathrm{IF^R}$をpreventableとnon preventableに分解して考えます。具体的には、CTMC図367.1に示すようにLAT2からの分岐をSPF方向(b)とDPF方向(c)に分離します。ただし、分解してもしなくても統合した結果は同じです。

図%%.1
図367.1 LAT2からの分岐をSPF方向(b)とDPF方向(c)に分離
(367.1)に、新しい記号の定義を示します。 $$ \begin{eqnarray} \{\mathrm{IF^R_{prev}}\text{up at }t\}&:=&\{\mathrm{IF^R}\text{up at }t\ \cap\ \text{IF preventable}\}\\ \{\mathrm{IF^R_\overline{prev}}\text{up at }t\}&:=&\{\mathrm{IF^R}\text{up at }t\ \cap\ \overline{\text{IF preventable}}\}\tag{367.1} \end{eqnarray} $$ より、 $$ \{\mathrm{IF^R}\text{up at }t\}=\{\mathrm{IF^R_{prev}}\text{up at }t\}\cup\{\mathrm{IF^R_\overline{prev}}\text{up at }t\}\tag{367.2} $$

が成立します。

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。


左矢前のブログ 次のブログ右矢

posted by sakurai on February 17, 2021 #365

前稿#222と同様な表を用いて、MPF detectedへの変更をまとめます。

表365.1 MPF detectedへ変更したIFRモデルのPMHF式
(1)SPF (2)DPF1 (3)DPF2
LAT2統合 $(1-K_\text{IF,RF})\lambda_\text{IF}-(1-K_\text{IF,RF})\alpha$
(361.5)
$(1-K_\mathrm{IF,RF}+K_\text{IF,RF}\color{red}{K_\text{IF,det}})\alpha\\+K_\mathrm{IF,RF}\color{red}{(1-K_\text{IF,det})}\beta$(362.6) $K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}\beta$
(363.4)
規格式1$\dagger$ $(1-K_\text{IF,RF})\lambda_\text{IF}+K_\text{IF,RF}\color{red}{K_\text{IF,det}}\alpha+K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}\beta$
(364.1)

規格式3$\dagger$ $(1-K_\text{IF,RF})\lambda_\text{IF}+K_\text{IF,RF}\color{red}{K_\text{IF,det}}\alpha +2K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}\beta$
(1)SPF (2b)SPF' (2a)DPF1 (3)DPF2
LAT2分離 $(1-K_\text{IF,RF})\lambda_\text{IF}-(1-K_\text{IF,RF})\alpha$ $(1-K_\text{IF,RF})\alpha$ $K_\text{IF,RF}\color{red}{K_\text{IF,det}}\alpha\\+K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}\beta$ $K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}\beta$
(1)+(2b)SPF (2a)DPF1 (3)DPF2
SPF統合 $(1-K_\text{IF,RF})\lambda_\text{IF}$ $K_\text{IF,RF}\color{red}{K_\text{IF,det}}\alpha\\+K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}\beta$ $K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}\beta$
SPF/DPF統合 $(1-K_\text{IF,RF})\lambda_\text{IF}$ $K_\text{IF,RF}\color{red}{K_\text{IF,det}}\alpha\\+2K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}\beta$

$$ ただし、\begin{cases} \begin{eqnarray} 非冗長系の時は\color{red}{K_\text{IF,det}}&=&1\\ 冗長系の時は\color{red}{K_\text{IF,det}}&=&0, K_\text{IF,RF}=1\\ \end{eqnarray} \end{cases} $$


$\dagger$規格式1: 規格第1版 Part 10-8.3.3の第1式(ブログの図104.2)の条件=IFが後にフォールトする場合=(1)SPF及び(2)DPF1。(3)DPF2はSMが後にフォールトする場合なので対象外
$\dagger$規格式3: 規格第1版 Part 10-8.3.3の第3式(ブログの図105.2)の条件=IF, SMのフォールトの順を問わない場合=(1)SPF及び(2)DPF1及び(3)DPF2

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。


左矢前のブログ 次のブログ右矢

posted by sakurai on February 16, 2021 #364

よって、MPF detectedを考慮した場合のPMHFは、それぞれの事象は排他であることから、(361.5)(362.6)(363.4)で求められた平均PUDを全て加えることで求められ、 $$ \begin{eqnarray} \require{cancel} M_\text{PMHF}&=&\overline{q_\mathrm{SPF,IFU}}+\overline{q_\mathrm{DPF1,IFR}}+\overline{q_\mathrm{DPF2, IFR}}\\ &=&(1-K_\text{IF,RF})\lambda_\text{IF}-\bcancel{(1-K_\text{IF,RF})\alpha}+\bcancel{(1-K_\text{IF,RF})\alpha}+K_\text{IF,RF}\color{red}{K_\text{IF,det}}\alpha\\ & &+K_\text{IF,RF}\color{red}{(1-K_\text{IF,det})}\beta+K_\text{IF,RF}\color{red}{(1-K_\text{IF,det})}\beta\\ &=&\bbox[#ccffff,2pt]{(1-K_\text{IF,RF})\lambda_\text{IF}+K_\text{IF,RF}\color{red}{K_\text{IF,det}}\alpha+2K_\mathrm{IF,RF}\color{red}{(1-K_\text{IF,det})}\beta}\\ &=&(1-K_\text{IF,RF})\lambda_\text{IF}+\frac{1}{2}K_\text{IF,RF}\color{red}{K_\text{IF,det}}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}\tau]\\ & &+K_\mathrm{IF,RF}\color{red}{(1-K_\text{IF,det})}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{MPF}})T_\text{lifetime}+K_{\mathrm{MPF}}\tau],\\ \end{eqnarray}\tag{364.1} $$

$$ ただし、\begin{cases} \begin{eqnarray} \alpha&:=&\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}\tau]\\ \beta&:=&\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{MPF}})T_\text{lifetime}+K_{\mathrm{MPF}}\tau]\\ K_{\mathrm{MPF}}&:=&K_{\mathrm{IF,MPF}}+K_{\mathrm{SM,MPF}}-K_{\mathrm{IF,MPF}}K_{\mathrm{SM,MPF}} \end{eqnarray} \end{cases} $$ この一般式に対して場合分けを行って、

  1. 非冗長系においては抑止されるフォールトは全て検出可能なので、$K_\text{IF,det}=1$とすれば、 $$ M_\text{PMHF,NRD}=\bbox[#ccffff,2pt]{(1-K_\text{IF,RF})\lambda_\text{IF}+K_\text{IF,RF}\alpha}\\ =(1-K_\text{IF,RF})\lambda_\text{IF}+\frac{1}{2}K_\text{IF,RF}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}\tau] \tag{364.2} $$

  2. 冗長系においては抑止されるフォールトは(1st SMでは)全て検出不可であり、一方全て抑止されるため、$K_\text{IF,det}=0, K_\text{IF,RF}=1$とすれば、 $$ M_\text{PMHF,RD}=\bbox[#ccffff,2pt]{2\beta}=\lambda_\mathrm{IF}\lambda_\mathrm{SM}[(1-K_\mathrm{MPF})T_\text{lifetime}+K_\mathrm{MPF}\tau] \tag{364.3} $$ このように、非冗長系と冗長系に対するPMHF式が導出されます。

非冗長系1.の(364.2)は、規格第1版PMHF第1式と完全に一致しています。

図104.2
図104.2 1st edition規格第1式(再掲)

その理由は、規格第1版の前提がIFUモデルだからであり、IFのレイテントフォールトが無い場合、つまりIFの検出されたフォールトは全て即時修理されるモデルだからです。従って、冗長系に適用できないのは当然であり、論文の必然性があったわけです。

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。


左矢前のブログ 次のブログ右矢

posted by sakurai on February 15, 2021 #363

LAT1DPF2の平均PUDの計算

次にLAT1からDPF2の平均PUDを計算します。同様に、LAT1の状態確率前稿#105と比べて変化します。具体的にはIFのVSG preventable部分の確率が下がります。

図%%.1
図363.1 CTMCにおいてLAT1DPF2の遷移

前稿#105の式(105.1)はそのままです。LAT1からDPF2への平均PUDは、 $$ \begin{eqnarray} \overline{q_{\mathrm{DPF2,IFR}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{DPF2\ at\ }T_\text{lifetime}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT1\ at\ }t\cap\mathrm{SM\ down\ in\ }(t, t+dt)\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{SM\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT1\ at\ }t\}\\ & &\ \ \ \ \cdot\Pr\{\mathrm{LAT1\ at\ }t\} \end{eqnarray} \tag{363.1} $$ LAT1の状態確率に対する条件を求めます。IFのフォールトのうちMPF detectedはlatentとならず、直ちに修理されるものとみなされるため、LAT1

  • IFの不稼働状態、かつ
  • SM1によりVSGは抑止され、かつSM1により検出されず、かつ
  • SM2により検出されず、かつ
  • SM1の稼働状態

のようにこの条件が追加されます。これを確率式で書くと以下のように赤字の条件が加わります。さらに(355.1)を用いて書き換えると、 $$ \Pr\{\mathrm{LAT1\ at\ }t\}=\Pr\{\mathrm{IF\ down\ at\ }t\cap\text{IF preventable}\\ \cap\color{red}{\text{IF not detected }}\cap\mathrm{SM\ up\ at\ }t\}\\ =\Pr\{\mathrm{IF^R\ down\ at\ }t\}\Pr\{\text{IF preventable}\}\color{red}{\Pr\{\text{IF not detected}\}}\Pr\{\mathrm{SM\ up\ at\ }t\}\\ =K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}Q_{\mathrm{IF}}(t)A_{\mathrm{SM}}(t)\tag{363.2} $$ と書けます。

一方、 $$ \require{cancel} \Pr\{\mathrm{SM\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT1\ at\ }t\}\\ =\Pr\{\mathrm{SM\ down\ in\ }(t, t+dt]\ |\\ \mathrm{SM\ up\ at\ }t\cap\bcancel{\mathrm{IF^R\ down\ at\ }t}\cap\bcancel{\text{IF preventable}}\cap\bcancel{\color{red}{\text{IF not detected}}}\}\\ =\Pr\{\mathrm{SM\ down\ in\ }(t, t+dt]\ |\ \mathrm{SM\ up\ at\ }t\}=\lambda_{\mathrm{SM}}dt\tag{363.3} $$ であるから、(363.1)は、 $$ \begin{eqnarray} \overline{q_{\mathrm{DPF2, IFR}}}&=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}Q_{\mathrm{IF}}(t)A_{\mathrm{SM}}(t)\lambda_{\mathrm{SM}}dt\\ &=&\frac{K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\left[(1-K_{\mathrm{IF,MPF}})F_{\mathrm{IF}}(t)+K_{\mathrm{IF,MPF}}F_{\mathrm{IF}}(u)\right]\\ & &\cdot\left[(1-K_\text{SM,MPF})f_\text{SM}(t)+K_\text{SM,MPF}f_\text{SM}(u)\right]dt\\ &\approx&\frac{K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}}{2}\lambda_{\mathrm{SM}}\lambda_{\mathrm{IF}}\left[(1-K_{\mathrm{MPF}})T_\text{lifetime}+K_{\mathrm{MPF}}\tau\right]\\ &=&K_{\mathrm{IF,RF}}\color{red}{(1-K_\text{IF,det})}\beta, \end{eqnarray}\tag{363.4} $$

$$ ただし、\begin{cases} \begin{eqnarray} u&:=&t\bmod\tau\\ \beta&:=&\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_{\mathrm{MPF}})T_\text{lifetime}+K_{\mathrm{MPF}}\tau]\\ K_{\mathrm{MPF}}&:=&K_{\mathrm{IF,MPF}}+K_{\mathrm{SM,MPF}}-K_{\mathrm{IF,MPF}}K_{\mathrm{SM,MPF}}\\ \end{eqnarray}\end{cases} $$

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。


左矢前のブログ 次のブログ右矢

posted by sakurai on February 12, 2021 #362

LAT2DPF1の平均PUDの計算

IFRモデルのLAT2からDPF1への平均PUDの計算を行いますが、MPF detectedの寄与分を改訂します。前稿#107での計算を基本として、MPF detectedが即修理となるため、IFのVSG preventable部分の稼働確率が上がります。従って、LAT2のIF preventable部分の稼働確率も同じだけ上がります。

図%%.1
図362.1 CTMCにおいてLAT2DPF1の遷移

前稿#107の式(107.1)はそのままです。LAT2からDPF1への平均PUDは、 $$ \begin{eqnarray} \overline{q_{\mathrm{DPF1,IFR}}}&=&\frac{1}{T_\text{lifetime}}\Pr\{\mathrm{DPF1\ at\ }T_\text{lifetime}\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{LAT2\ at\ }t\cap\ \mathrm{IF\ down\ in\ }(t, t+dt]\}\\ &=&\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\mathrm{IF\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2\ at\ }t\}\\ & &\cdot\Pr\{\mathrm{LAT2}\mathrm{\ at\ }t\} \end{eqnarray} \tag{362.1} $$ LAT2は、基本的にはIFの稼働状態でかつSM1の不稼働状態ですが、MPF detectedの定義である、

  • IFの不稼働
  • SM1による検出
  • VSGとはならない

の3条件を満たす部分も稼働とみなすため、赤字の条件を追加します。さらに(355.1)を用いて書き換えると、 $$ \begin{eqnarray} \Pr\{\mathrm{LAT2\ at\ }t\}&=&\Pr\{(\mathrm{IF^R\ up\ at\ }t\\ & &\color{red}{\cup\ (\mathrm{IF^R\ down\ at\ }t\ \cap\ \mathrm{IF^R\ detectable}\ \cap\ \mathrm{IF^R\ preventable})})\\ & &\cap\ \mathrm{SM\ down\ at\ }t\}\\ &=&(\Pr\{\mathrm{IF^R\ up\ at\ }t\}+\Pr\{\mathrm{IF^R\ down\ at\ }t\}\\ & &\color{red}{\cdot\Pr\{\mathrm{IF^R detectable}\ |\ \mathrm{IF^R preventable}\}}\cdot\Pr\{\mathrm{IF^R preventable}\})\\ & &\cdot\Pr\{\mathrm{SM\ down\ at\ }t\}\\ &=&\left[(1-K_{\text{IF,RF}})R_\text{IF}(t)+K_{\text{IF,RF}}A_\text{IF}(t)+\color{red}{K_\text{det}}K_\text{IF,RF}Q_\text{IF}(t)\right]Q_{\mathrm{SM}}(t) \end{eqnarray}\tag{362.2} $$ となります。この場合、$\Pr\{\mathrm{IF^R\ up\ at\ }t\}$は、$\text{IF preventable}$と$\overline{\text{IF preventable}}$のORであり、DPFの意味では前者のみなのですが、形式上SMがdownしている状態であるため、SPFもDPF扱いとなるので、両方の場合を含めています。ちなみに、 $$ \begin{eqnarray} \Pr\{\mathrm{IF^R\ up\ at\ }t\}&=&\Pr\{(\mathrm{IF^U\ up\ at\ }t\ \cap\ \overline{\text{IF preventable}})\\ & &\cup\ (\mathrm{IF^R\ up\ at\ }t\ \cap\ \text{IF preventable})\}\\ &=&(1-K_{\text{IF,RF}})R_\text{IF}(t)+K_{\text{IF,RF}}A_\text{IF}(t) \end{eqnarray}\tag{362.3} $$ を(362.2)に用いています。

一方、(107.7)と同様に $$ \require{cancel} \Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{LAT2\ at\ }t\}\\ =\Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^U\ up\ at\ }t\cap\ \bcancel{\mathrm{SM\ down\ at\ }t}\}\\ =\Pr\{\mathrm{IF^U\ down\ in\ }(t, t+dt]\ |\ \mathrm{IF^U\ up\ at\ }t\}=\lambda_{\mathrm{IF}}dt\tag{362.4} $$ となります。よって、LAT2からDPF1への平均PUDは、 $$ \begin{eqnarray} \overline{q_{\mathrm{DPF1,IFR}}}&=&\frac{1-K_\mathrm{IF,RF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)R_{\mathrm{IF}}(t)\lambda_{\mathrm{IF}}dt+\frac{K_\mathrm{IF,RF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)A_{\mathrm{IF}}(t)\lambda_{\mathrm{IF}}dt\\ & &+\frac{\color{red}{K_\text{IF,det}}K_\mathrm{IF,RF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)(1-A_{\mathrm{IF}}(t))\lambda_{\mathrm{IF}dt}\\ &=&\frac{1-K_\mathrm{IF,RF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)f_{\mathrm{IF}}(t)dt\\ & &+\frac{K_\mathrm{IF,RF}\color{red}{(1-K_\text{IF,det})}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_\mathrm{SM}(t)q_\mathrm{IF}(t)dt\\ & &+\frac{\color{red}{K_\text{det}}K_\mathrm{IF,RF}\lambda_\mathrm{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}Q_{\mathrm{SM}}(t)dt\\ &=&\frac{1-K_\mathrm{IF,RF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}[(1-K_\mathrm{SM,MPF})F_{\mathrm{SM}}(t)+K_\mathrm{SM,MPF}F_{\mathrm{SM}}(u)]f_{\mathrm{IF}}(t)dt\\ & &+\frac{K_\mathrm{IF,RF}\color{red}{(1-K_\text{IF,det})}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}[(1-K_\mathrm{SM,MPF})F_{\mathrm{SM}}(t)+K_\mathrm{SM,MPF}F_{\mathrm{SM}}(u)]\\ & &\cdot\left[(1-K_\mathrm{IF,MPF})f_{\mathrm{IF}}(t)+K_\mathrm{IF,MPF}f_{\mathrm{IF}}(u)\right]dt\\ & &+\frac{K_\mathrm{IF,RF}\color{red}{K_\text{det}}\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}[(1-K_\mathrm{SM,MPF})F_{\mathrm{SM}}(t)+K_\mathrm{SM,MPF}F_{\mathrm{SM}}(u)]dt\\ \end{eqnarray}\tag{362.5} $$ これに(360.5)及び(360.8)を用いて、 $$ \begin{eqnarray} (362.5)&\approx&\frac{1-K_\mathrm{IF,RF}}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}\tau]\\ & &+\frac{K_\mathrm{IF,RF}\color{red}{(1-K_\text{IF,det})}}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1- K_\mathrm{MPF})T_\text{lifetime}+K_\mathrm{MPF}\tau]\\ & &+\frac{K_\mathrm{IF,RF}\color{red}{K_\text{det}}}{2}\lambda_\text{IF}\lambda_\text{SM}[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}\tau]\\ &=&(1-K_\mathrm{IF,RF}+K_\text{IF,RF}\color{red}{K_\text{det}})\alpha+K_\mathrm{IF,RF}\color{red}{(1-K_\text{IF,det})}\beta, \end{eqnarray}\tag{362.6} $$

$$ ただし、\begin{cases} \begin{eqnarray} u&:=&t\bmod\tau\\ \alpha&:=&\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_\mathrm{SM,MPF})T_\text{lifetime}+K_\mathrm{SM,MPF}\tau]\\ \beta&:=&\frac{1}{2}\lambda_{\mathrm{IF}}\lambda_{\mathrm{SM}}[(1-K_\mathrm{MPF})T_\text{lifetime}+K_\mathrm{MPF}\tau]\\ K_\mathrm{MPF}&:=&K_\mathrm{IF,MPF}+K_\mathrm{SM,MPF}-K_\mathrm{IF,MPF}K_\mathrm{SM,MPF}\\ &=&1-(1-K_\mathrm{IF,MPF})(1-K_\mathrm{SM,MPF}) \end{eqnarray} \end{cases} $$

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。


左矢前のブログ 次のブログ右矢


ページ: