Article #368

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.
posted by sakurai on February 25, 2021 #368

新たに導入したKパラメータ$K_\text{det}$((355.1)式)により、一つめのIFのフォールトとそれによる状態の場合分けをし信頼度・不信頼度を求めたものを、表368.1に示します。

表368.1 一つめのIFのフォールトの場合分けした信頼度・不信頼度
Non preventable
$1-K_\text{IF,RF}$
Faulty
$(1-K_\text{IF,RF})F_\text{IF}(t)$
(1) IF down=RF
Faultless
$(1-K_\text{IF,RF})R_\text{IF}(t)$
(2) IF up
Preventable
$K_\text{IF,RF}$
SM1 detectable
$K_\text{IF,det}$
Faulty
$K_\text{IF,RF}K_\text{IF,det}F_\text{IF}(t)$
(3) IF down=LF⇒up
Faultless
$K_\text{IF,RF}K_\text{IF,det}R_\text{IF}(t)$
(4) IF up
SM1 undetectable
$1-K_\text{IF,det}$
SM2 detectable
$K_\text{IF,MPF}$
Faulty
$K_\text{IF,RF}(1-K_\text{IF,det})K_\text{IF,MPF}F_\text{IF}(u)$
(5) IF down=LF
Faultless
$K_\text{IF,RF}(1-K_\text{IF,det})K_\text{IF,MPF}R_\text{IF}(u)$
(6) IF up
SM2 undetectable
$1-K_\text{IF,MPF}$
Faulty
$K_\text{IF,RF}(1-K_\text{IF,det})(1-K_\text{IF,MPF})F_\text{IF}(t)$
(7) IF down=LF
Faultless
$K_\text{IF,RF}(1-K_\text{IF,det})(1-K_\text{IF,MPF})R_\text{IF}(t)$
(8) IF up

$s.t.\ \ u:=t\bmod\tau$
◆色分け:
Faultless, フォールト無し
Faulty, フォールトする
FaultyをFaultlessに変更
Faultyだが定期修理される

規格ではKパラメータは$K_\text{RF}$及び$K_\text{MPF}$しかなく、SMによる検出は、1st SMも2nd SMも一緒くたになっていました。これだと冗長系を扱えないため、弊社は2017年に$K_\text{det}$を導入しました。弊社は一貫してKパラメータは確率的に決まる定数ではないことを主張してきました。VSG抑止、1st SMによる検出、2nd SMによる検出のいずれもアーキテクチャ的に割合がpredeterminedとなっていると考えます。

偶数番号は全てFaultlessであり、up状態です。奇数番号はFaulty、すなわちフォールト生起状態ですが、downとは限りません。(1)はRF(Residual Fault)、(3)は 従来はLF(Latent Fault)、今回は永久up状態、 (5)及び(7)はLF(Latent Fault)です。(5)及び(6)においてはSM2(2nd SM)によって検出されたフォールトは周期的に修理されるため、時刻tではなく$u(:=t \bmod \tau)$で表されます。(5)は修理されるLFなので露出時間は$\tau$ですが、(7)は修理されないLFなので露出時間は車両寿命です。

ついでに、以下は従来と変わりはありませんが、SMの信頼度・不信頼度の表です。$K_\text{SM,RF}, K_\text{SM,det}$が存在しないので、$K_\text{SM,MPF}$のみの場合分けとなります。

表368.2 一つめのSMのフォールトの場合分けした信頼度・不信頼度
SM2 detectable
$K_\text{SM,MPF}$
Faulty
$K_\text{SM,MPF}F_\text{SM}(u)$
(9) SM down=LF
Faultless
$K_\text{SM,MPF}R_\text{SM}(u)$
(10) SM up
SM2 undetectable
$1-K_\text{SM,MPF}$
Faulty
$(1-K_\text{SM,MPF})F_\text{SM}(t)$
(11) SM down=LF
Faultless
$(1-K_\text{SM,MPF})R_\text{SM}(t)$
(12) SM up

$s.t.\ \ u:=t\bmod\tau$
◆色分け:
Faultless, フォールト無し
Faulty, フォールトする
Faultyだが定期修理される

RAMS 2022においてMPF detectedの再考に基づくPMHF式の論文発表が終了したため、秘匿部分を開示します。

左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax. If you include an ad such as http://, it will be invalidated by our AI system.

Please enter the numbers as they are shown in the image above.