Posts Tagged with "ISO 26262"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

RAMS査読2, 3回目

posted by sakurai on August 26, 2023 #650

RAMS論文の2回目の査読により、本文を含めてかなりの項目が指摘を受けました。全て対応したところ、1週間ほどで3回目の査読結果が届きました。

今回の指摘は1点だけであり、タイトルとSUMMARY & CONCLUSONSの内容を合わせて、SUMMARY & CONCLUSONSのあまり関係ないところを削除せよとのことでした。1日で対応し、提出済みです。

表650.1 RAMS 2024へのマイルストーン
期限 マイルストーン 状態
2023/4/30 アブストラクト投稿締め切り(システム入力) 投稿済
2023/6/10⇒2023/5/25 アブストラクト採択結果 採択済
2023/8/1 論文、プレゼン投稿締め切り(名前、所属無し版) 投稿済
2023/9/1 第1回論文、プレゼン資料査読コメント受領 投稿済
2023/10/10 改訂版論文、プレゼン投稿締め切り(名前、所属無し版)
2023/10/22 最終査読コメント受領
2023/10/10 学会出席登録締め切り
2023/10/10 最終論文、プレゼン投稿締め切り(名前、所属有り版)

左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (20)

posted by sakurai on August 25, 2023 #649

人間:

説明が矛盾しています。両方のケースで$1-K$を用いています。また、検出不可能なケースで$t-\tau_n$と誤って用いています。さらに検出可能なケースで$F_\text{SM}(t)$としています。

ChatGPT:

おっしゃる通り、私の説明は間違いが含まれております。ここでの重要な点は、検出可能な故障と検出不可能な故障について別々に考える必要があるということです。

検出可能な故障について考えると、これは最後の検査$ \tau_n $以降に発生し、次の検査時間までに検出されると考えられます。したがって、不稼働度$ Q_\text{SM}^{(1)}(t) $は、最後の検査以降に発生したフォールトの不信頼度$ F_\text{SM}(t - \tau_n) $とフォールトが検出される確率$ K $の積として表されます。

$$ Q_\text{SM}^{(1)}(t) = F_\text{SM}(t - \tau_n) K $$

一方、検出不可能な故障について考えると、これは最後の検査$ \tau_n $以前に発生し、次の検査時間までに検出されないと考えられます。したがって、不稼働度$ Q_\text{SM}^{(2)}(t) $は、最後の検査以前に発生したフォールトの不信頼度$ F_\text{SM}(u) $とフォールトが検出されない確率$ 1 - K $の積として表されます。

$$ Q_\text{SM}^{(2)}(t) = F_\text{SM}(u) (1 - K) $$

ここで、$ u = t - \tau_n $と置いています。これらを合計すると、全体の不稼働度$ Q_\text{SM}(t) $を得ることができます。

$$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t - \tau_n) K + F_\text{SM}(u) (1 - K) $$


検出可能の場合の説明は合っています。ところが、検出不可能の場合の説明が誤っています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (19)

posted by sakurai on August 24, 2023 #648

前回は、稼働度の一般方程式 $$ A(t) = R(t) + \int_{0}^{t} m(x) \cdot R(t - x) dx $$ を定期修理の場合に特殊化することにより、数式変形を用いて不稼働度$Q(t)$を導出させましたが、今回は過去記事のように、不稼働度をフォールトの検出・非検出に分けて考えさせ、$Q(t)$を導出させます。

例によってChatGPTは毎回回答が変わるので、よりましな回答をした場合について記載します。まず、以下にChatGPTに対する質問を記載します。


人間:

ISO 26262の範囲では故障率$\lambda$は一定値をとるため、フォールトの分布は指数分布となります。

一般にはSM (Safety Mechanism)にフォールトが起きても直ちにVSG(Violation of a safety goal)とならないため、意図機能が動作している間に修理が可能であり、これをリペアラブルエレメントと言います。SMの故障率は$\lambda_\text{SM}$です。

定期検査修理スキームは以下のとおりです。2nd SMによるSMに対する定期検査が、周期$\tau$で行われます。 $i$番目の検査時刻は$i\tau,\ \ i=1,...,n$とするとき、最近の検査時刻を$\tau_n$とすれば、$\tau_n=n\tau=\lfloor\frac{t}{\tau}\rfloor \tau$と表されます。定期検査により検出された(フォールト検出率を$K$, 一定値)フォールトは全て、瞬時に修理されるものとします。

SMのフォールトについて、(1)検出可能、(2)検出不可能の2つに分けて考え、それぞれの、tにおける不稼働度$Q_\text{SM}(t)$を、SMの不信頼度$F_\text{SM}(t)$を用いて表現してください。$u\equiv t-\tau_n$として$\tau$及び$\tau_n$を消去したうえで$t, u$で表現してください。exponential表現は使用しないこと。

ChatGPT:

まず、故障が$ t $で発生し、それが検出可能かどうかを分けて考えてみましょう。

  1. 検出可能なフォールト:
    これは、最後の検査$ \tau_n $以降に発生したものです。$ t $における不稼働度は、発生してから次の検査までの間故障が検出されない確率を考えればよく、これは、$ K $の補数である$ 1-K $を用いて表すことができます。したがって、$ t $における不稼働度$ Q_\text{SM}^{(1)}(t) $は次のようになります。 $$ Q_\text{SM}^{(1)}(t) = F_\text{SM}(t) (1 - K) $$

  2. 検出不可能なフォールト:
    これは、最後の検査$ \tau_n $より前に発生したものです。$ t $における不稼働度は、発生してから最後の検査までの間故障が検出されない確率を考えればよく、これは、$ K $の補数である$ 1-K $を用いて表すことができます。したがって、$ t $における不稼働度$ Q_\text{SM}^{(2)}(t) $は次のようになります。 $$ Q_\text{SM}^{(2)}(t) = F_\text{SM}(t- \tau_n) (1 - K) $$ ここで、$ u = t - \tau_n $とすると、以上の2つの不稼働度をまとめて表現することができます。 $$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t) (1 - K) + F_\text{SM}(u) (1 - K) $$ これが、定期検査と修理を行うシステムにおける、$ t $における不稼働度を表現したものとなります。


考え方の方向は良いのですが、細部でいろいろ問題がありそうです。まず検出可・不可について両者ともに$1-K$を誤って用いています。さらに、検出可の場合は最後に検出された後からのフォールトのみを考えれば良いのですが、その点について検出不可の場合と混乱しているようです。


左矢前のブログ 次のブログ右矢

$\frac{1}{t}Q(t)$のグラフ

posted by sakurai on August 23, 2023 #647

人間:

$M_\text{PMHF}$の定義は以下です。

$$M_\text{PMHF}\equiv\frac{1}{T_\text{lifetime}}Q(T_\text{lifetime})$$

これを時刻$t$に対して書き、車両寿命間でどうなるかを見てみます。

時間は$t$=1e4まで、$\tau$=1000, $\lambda$=0.001、$K_\text{MPF}$=0.8のとき、$\frac{1}{t}Q(t)$のグラフを赤で描いてください。

ChatGPT:

# Update the parameters
tau = 1000
K_MPF = 0.8

# Redefine t_values to range from 0 to 1e4
t_values = np.linspace(0, 1e4, 1000)

# Calculate Q(t) for different values of t, choosing the appropriate value of i for each t
Q_values = [Q(t, int(t/tau)) if t != 0 else 0 for t in t_values]

# Calculate 1/t * Q(t) for different values of t
Q_t_values = [Q_val/t if t != 0 else 0 for t, Q_val in zip(t_values, Q_values)]

# Plot the function 1/t * Q(t)
plt.figure(figsize=(10, 6))
plt.plot(t_values, Q_t_values, label="1/t * Q(t)", color="red")
plt.xlabel("Time (t)")
plt.ylabel("1/t * Q(t)")
plt.title("Graph of 1/t * Q(t) with τ = 1000, λ = 0.001 and K_MPF = 0.8")
plt.grid(True)
plt.legend()
plt.show()

図%%.1
図647.1 $\frac{1}{t}Q(t)$のグラフ

$M_\text{PMHF}$は本来はサブシステムに関するメトリクスですが、ここではあえてリペアラブルエレメント単体に関して不稼働度の時間平均のグラフを書かせてみました。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (18)

posted by sakurai on August 22, 2023 #646

人間:

$t$は1万時間、$\tau$は1000時間、$\lambda$は0.0001としたとき、$K_\text{MPF}$=0.2, 0.4, 0.6, 0.8の4本のグラフを一枚に表してください。また、色のバリエーションをつけてください。ただし明度が高いと見づらいので低くしてください。

ChatGPT:

import numpy as np
import matplotlib.pyplot as plt
import math

# Parameters
lambda_ = 0.0001
tau = 1000
K_MPF_values = [0.2, 0.4, 0.6, 0.8]

# Functions
def F(t, lambda_):
    return 1 - np.exp(-lambda_ * t)

def Q(t, lambda_, tau, K_MPF):
    n = np.floor(t / tau)
    u = t - n * tau
    return (1 - K_MPF) * F(t, lambda_) + K_MPF * F(u, lambda_)

# Time range
t_max = 1e4
t = np.linspace(0, t_max, 500)

# Plot with color variation
plt.figure(figsize=(10, 6))

colors = ['blue', 'green', 'purple', 'red']

for K_MPF, color in zip(K_MPF_values, colors):
    # Compute Q(t)
    Q_t = Q(t, lambda_, tau, K_MPF)
    plt.plot(t, Q_t, label=f'K_MPF = {K_MPF}', color=color)

plt.xlabel('Time (t)', fontsize=14)
plt.ylabel('Q(t)', fontsize=14)
plt.title('Graph of Q(t) for various K_MPF', fontsize=16)
plt.legend()
plt.grid(True)
plt.show()

図%%.1
図646.1 $Q(t)$のいろいろなグラフ

上記のグラフは、パラメータ $ \lambda = 0.0001, \tau = 1000 $ と時間範囲 $ t = 0 $ から $ t = 1 \times 10^{4} $ における $ K_{\text{MPF}} = 0.2, 0.4, 0.6, 0.8 $ の各ケースでの $ Q(t) $ の挙動を色分けして示しています。

各 $ K_{\text{MPF}} $ の値に対応するラインは、指定した色(青、緑、紫、赤)で描画されています。これにより、各 $ K_{\text{MPF}} $ の値の影響を一目で理解することが容易になります。

修理の効果 $ K_{\text{MPF}} $ を大きくすると、全体的な信頼度が向上することが確認できます。また、検査周期 $ \tau = 1000 $ 時間毎の信頼度の改善(リセット)の影響も $ K_{\text{MPF}} $ が大きいほど顕著になります。

なお、上記のグラフは特定のパラメータ設定に基づいていますので、異なるパラメータ値や時間範囲でグラフを描くことも可能です。必要であれば、お知らせください。


このようにChatGPTはグラフを描くだけでなく、$K_\text{MPF}$を振った時の挙動まで(頼んでいないのに)分析してくれます。ChatGPTのアルゴリズムは、次にくる確率が高い言葉が選択されるのだそうですが、単にそれだけでプログラミングができたり、ここまでできるものでしょうか?


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (17)

posted by sakurai on August 21, 2023 #645

人間:

$Q(t)=(1−K_\text{MPF})F(t)+K_\text{MPF}F(u)$、ただし$F(t)$は不信頼度であり、$F(t)=1-e^{-\lambda t}$。また$u=t-n\tau$、$\tau$は検査周期、$n=\lfloor\frac{t}{\tau}\rfloor$であるとき$Q(t)$のグラフを描いてください。

ChatGPT:

まず、与えられた情報から数式を整理し、Pythonで使用できる形にまとめましょう。

  • $ F(t) = 1 - e^{-\lambda t} $ は不信頼度(unreliability)関数です。ここで、$ \lambda $ は故障率です。
  • $ u = t - n\tau $ は最後の検査からの経過時間を表します。ここで、$ \tau $ は検査周期、$ n = \lfloor \frac{t}{\tau} \rfloor $ は検査回数を表します。
  • $ Q(t) = (1 - K_{\text{MPF}})F(t) + K_{\text{MPF}}F(u) $ は修理による信頼度の改善を表す関数です。ここで、$ K_{\text{MPF}} $ は修理の効果を表します。

この情報を基に、特定のパラメータ値(例えば $ \lambda = 0.1, \tau = 5, K_{\text{MPF}} = 0.2 $)で $ Q(t) $ のグラフを描くことができます。

ただし、$ t $ の範囲を指定していないため、ここでは $ t = 0 $ から $ t = 50 $ の範囲でグラフを描くことにします。もし異なる範囲やパラメータ値を希望する場合は、お知らせください。

import numpy as np
import matplotlib.pyplot as plt
import math

# Parameters
lambda_ = 0.1
tau = 5
K_MPF = 0.2

# Functions
def F(t, lambda_):
    return 1 - np.exp(-lambda_ * t)

def Q(t, lambda_, tau, K_MPF):
    n = np.floor(t / tau)
    u = t - n * tau
    return (1 - K_MPF) * F(t, lambda_) + K_MPF * F(u, lambda_)

# Time range
t = np.linspace(0, 50, 500)

# Compute Q(t)
Q_t = Q(t, lambda_, tau, K_MPF)

# Plot
plt.figure(figsize=(10, 6))
plt.plot(t, Q_t, label='Q(t)')
plt.xlabel('Time (t)', fontsize=14)
plt.ylabel('Q(t)', fontsize=14)
plt.title('Graph of Q(t)', fontsize=16)
plt.legend()
plt.grid(True)
plt.show()

図%%.1
図645.1 $Q(t)$のグラフ

上記のグラフは、与えられたパラメータ($ \lambda = 0.1, \tau = 5, K_{\text{MPF}} = 0.2 $)と時間範囲 $ t = 0 $ から $ t = 50 $ における $ Q(t) $ の挙動を示しています。

$ Q(t) $ は時間とともに増加し、一定の検査周期 $ \tau = 5 $ 毎に信頼度が改善(リセット)されていることがわかります。これは、検査と修理が行われるたびにシステムの信頼度が高まることを表しています。

なお、上記のグラフは特定のパラメータ設定に基づいていますので、異なるパラメータ値や時間範囲でグラフを描くことも可能です。必要であれば、お知らせください。


  • ChatGPTのコードインタプリターを用いました。
  • 「$ u = t - n\tau $ は最後の検査からの経過時間を表します」という説明は少々驚きます。式を与えただけですが、ChatGPTは式の意味を正確に理解しています。
  • 従来はグラフを描くのにプログラムを自分で作成するのは当たり前として、パラメータも全て指定する必要があったのが、AIにより全て全自動で書いて貰えるようになりました。ただし、プログラムやパラメータの妥当性は確認する必要があります。

左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (16)

posted by sakurai on August 14, 2023 #644

人間:

以前に「ユーザーが求めた微分の計算を行うとき、ChatGPTは実際に微分の計算を実行するわけではなく」と回答しました。一方今回は「微分の基本的な法則について理解してい」るとのこと。これは論理矛盾ですが、とちらが正しいのでしょうか?

ChatGPT:

ご質問ありがとうございます。その点について明確に説明いたします。

私が「理解している」と言ったのは、GPTモデルがその計算を記憶し、理解しているという意味ではなく、訓練データに基づいて微分の計算や法則についての情報を生成する能力があるという意味です。GPTは人間のように「理解」するわけではなく、大量のテキストデータからパターンを学び、そのパターンに基づいて新たなテキストを生成します。

つまり、「理解している」という表現は、このAIが微分の法則を「知っている」わけではなく、その計算を模倣することができるという意味での「理解」です。また、私が微分の計算を「実行」するわけではないと言ったのは、このAIが数学的な計算をプログラムとして「実行」するわけではなく、学習した知識を基に回答を生成するという意味です。

したがって、論理的に矛盾しているわけではありません。それぞれの表現は、AIが情報を処理し、応答を生成する方法を異なる角度から説明したものです。


  • 単なるパターンマッチングのようです。それにしては「理解力」がありそうで、不思議なことです。逆に、東大の松尾先生がおっしゃったように「人間の理解力なんてその程度のもの」ということかもしれません。
  • 少々定性的な議論に深入りして面白くないので(「私は単語をこのような意味で用いた」等の言い逃れができるので)、定量議論に戻ってグラフを書かせることにします。

左矢前のブログ 次のブログ右矢

posted by sakurai on August 11, 2023 #643

8月8日がRAMSに対する無記名論文の投稿締め切りであり、8月9日から査読期間ですが、今回は初日に査読コメントが届きました。論文のタイトルは以下のとおりです。

"Bridging the Gap of the Derivation Process in ISO 26262 Probabilistic Metric (PMHF) Formulas"
(ISO 26262確率論的指標(PMHF)公式の導出プロセスのギャップを埋める)

以下は査読者コメントです。

  1. 論文タイトル「ギャップ」が明確にわかる名称に変更すること。
  2. 論文の論理的推論を「ギャップ」を新しい名称に変更し、SUMMARY & CONCLUSONSにコンパクトにまとめる。
  3. ギャップの前提条件とシナリオの違い、革新的な解決策に焦点を当てる。

今回の論文は、ISO 26262規格のPMHF方程式の誤りを指摘し、それを修正すると我々の提案式と一致することを数学的に証明しており、内容としてはロバストなものだと考えています。しかしながら、それを題名でダイレクトに書くのがはばかれたため、婉曲に規格式と我々の提案式のギャップという表現にしたものです。

一方、査読者はギャップという言葉が曖昧であり、何と何の間がギャップで規格になんの問題があるのかがわかりにくかったようです。従って、対処としては本来「規格PMHF方程式の誤りとその解決」とするのが明快です。しかしながら、それでは規格に対して挑戦的になるため、ChatGPTに問題点とその解決ではあるものの、ある程度婉曲になる題名を数案出してもらいました。

"Identifying and Addressing the Challenges in ISO 26262 PMHF Formulas: A Proven Path to Our Proposed Solution"

このタイトルは「問題点を特定し、対処する」というプロセスを強調し、それが提案された解決策への確実な道筋であることを示します。

少々長いのと、題名では省略語は使用できないため、

"Identifying and Addressing the Challenges in ISO 26262 Probabilistic Metric (PMHF) Formulas"
(ISO 26262確率論的指標(PMHF)公式の課題の特定と対処)

と修正します。さらに、

"Revisiting the Derivation Process in ISO 26262 Probabilistic Metric (PMHF) Formulas: A Proposed Approach"

「再検討」という言葉は、改善の余地があることを示唆するのに十分婉曲ですが、明確な問題提起としても機能します。

これも短縮して、

"Revisiting the Derivation Process in ISO 26262 Probabilistic Metric (PMHF) Formulas"
(ISO 26262確率論的指標(PMHF)公式の導出プロセスの再検討)

というのも良いと思っています。まさに導出過程に問題点があることが、第2版解説書から判明したからです。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (15)

posted by sakurai on August 10, 2023 #642

人間:

微分の基本的な法則はどの程度知っているのでしょうか?

ChatGPT:

私は以下のような微分の基本的な法則について理解しています:

  • 定数の微分:定数cの微分は0です。
  • 定数倍の法則:$(cf)' = cf'$ です。ここで、$c$は定数で、$f$は微分可能な関数です。
  • 和の法則:$(f + g)' = f' + g' $です。ここで、$f$と$g$は微分可能な関数です。
  • 積の法則:$(fg)' = f'g + fg'$ です。ここで、$f$と$g$は微分可能な関数です。
  • 商の法則:$(f / g)' = (f'g - fg') / g^2$ です。ここで、$f$と$g$は微分可能な関数で、gはゼロではありません。
  • 連鎖の法則:$(f(g(x)))' = f'(g(x)) * g'(x)$ です。ここで、$f$と$g$は微分可能な関数です。

また、特定の関数の微分についても知っています。例えば:

  • $x^n$の微分は $nx^{(n-1)} $です。
  • $e^x$の微分は $e^x$ です。
  • $\text{ln}(x)$の微分は $1/x$ です。

以上は基本的な一部ですが、より高度な微分の法則や技術についても理解しています。


微分の法則を理解しているとのことです。これは、以前に「ユーザーが求めた微分の計算を行うとき、ChatGPTは実際に微分の計算を実行するわけではなく」と回答したのとの間には矛盾があるようです。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (14)

posted by sakurai on August 9, 2023 #641

人間:

数学的な規則はどこまで理解しているのでしょうか?例えば(a+b)(c+d)の展開は正しくできるようですが。

ChatGPT:

ChatGPTは、基本的な数学的操作と規則、包括的な代数、微積分、幾何学、統計学などの高度な概念についても理解しています。例えば、次のような規則や公式について理解しています:

  • 加算、減算、乗算、除算の基本的な操作
  • 指数と対数の法則
  • 二項定理を用いた式の展開(例:$(a+b)(c+d) = ac + ad + bc + bd$)
  • 微分と積分の基本的な法則
  • 平均、分散、相関などの統計的な指標の計算
  • トリゴノメトリーの基本的な恒等式(例:$\sin^2(x) + \cos^2(x) = 1$)

しかし、複雑な問題や抽象的な概念については、しばしば誤りを含む解答を提供することがあります。また、数学的な理解が直感的でなく、記憶に基づくものであるため、特定のコンテキストや問題の複雑さによっては間違った結果を出すこともあります。

これらの制約は、現在のAI技術の限界を反映したものであり、モデルの精度を向上させるための研究が続けられています。


基本的な計算法則は「理解」しているようです。それにしては微分での単純ミスが気になります。


左矢前のブログ 次のブログ右矢


ページ: