Article #295

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

PMHF論文sae2020 (6)

posted by sakurai on August 17, 2020 #295

ISO 26262とPMHFのコンセプト(続き)

論文sae2020$\dagger$のISO 26262とPMHFのコンセプト(続き)です。

The PMHF and all the related failure rate calculations in a product development team are often handled by a reliability engineer and even though the standard uses the metrics reflecting the probability of failure (or unreliability in reliability engineer’s terms), some of the approaches and metrics used by ISO 26262 are not that of reliability engineering practice. Therefore, the objective of this paper is to explain some of the metrics and calculations suggested by the Functional Safety standard in reliability engineering terms in order to make their application easier.

製品開発チームにおける PMHF や関連するすべての故障率計算は信頼性技術者が担当することが多く、規格では故障の確率(信頼性技術者の用語では不信頼度)を反映したメトリクスを使用しているにもかかわらず、ISO 26262 で使用されているアプローチやメトリクスの中には、信頼性工学の実務とは異なるものもある。そこで、本稿の目的は、機能安全規格で提案されているメトリクスや計算の一部を信頼性工学の用語で説明し、その適用を容易にすることである。

「故障の確率(信頼性技術者の用語では不信頼度)」という表現は、ISO 26262的には誤りです。故障の確率や不信頼度(これらは修理を含まない)ではなく修理を考慮した不稼働度が正しい表現です。次の章で説明しますが、これについてはほとんどの論文が同じ誤りを犯しています。その理由は、規格に数学的な説明が無いためであり、これはPMHF式を自ら導出して初めて理解されることです。

PMHFと基本的な信頼性計算

In order to link the PMHF and reliability terminology, certain basics of reliability calculations need to be briefly covered here which can be found in multiple sources (see, for example, [3]). If the random failures in the field can be modeled by a statistical distribution with the probability density function (pdf) f(t), then the cumulative distribution function (CDF) F(t) representing the probability of failure at the time t or unreliability can be calculated as:

PMHF と信頼性の用語を結びつけるために、信頼性計算のある種の基礎をここで簡単に説明する必要があります。現場でのランダムな故障が確率密度関数(pdf) f(t)を持つ統計分布でモデル化できるならば、時刻 t での故障の確率または信頼性の低下を表す累積分布関数(CDF) F(t)は次のように計算できます。

故障だけを考えれば、PMHFは確率密度関数(PDF)あるいは、その累積分布関数である不信頼度(CDF)により表されるのですが、一方ISO 26262では2nd order SMによる周期的な故障検出と修理を仮定しています。従って、修理を考慮すると、不信頼度$F(t)$は不稼働度$Q(t)$に変更する必要があり、確率密度$f(t)$は不稼働密度(PUD)$q(t)$に変更する必要があります。


$\dagger$: Kleyner, A. and Knoell, R., “Calculating Probability Metric for Random Hardware Failures (PMHF) in the New Version of ISO 26262 Functional Safety - Methodology and Case Studies,” SAE Technical Paper 2018-01-0793, 2018


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax. If you include an ad such as http://, it will be invalidated by our AI system.

Please enter the numbers as they are shown in the image above.