Article #224

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

IFのAvailabilityの平均化

posted by sakurai on March 20, 2020 #224

#223に示した理由により、本稿の議論は全て取り消します。

今回はダイレクトに $$ \img[-1.35em]{/images/withinseminar.png} \tag{224.1} $$ を求めます。

まず、(224.1)式に、指数分布式である $$ \begin{eqnarray} \begin{cases} A_\text{IF}\text(s)&=&(1-K_\text{IF,MPF})e^{-\lambda_\text{IF}s}+K_\text{IF,MPF}e^{-\lambda_\text{IF}u}, u:=s\bmod \tau及び\\ R_\text{IF}(s)&=&e^{-\lambda_\text{IF}s} \end{cases} \end{eqnarray}\tag{224.2} $$ を代入し、 $$ \begin{eqnarray} (224.1)&=&\frac{1}{t}\int_0^t\left[(1-K_\text{IF,MPF})e^{-\lambda_\text{IF}s}+K_\text{IF,MPF}e^{-\lambda_\text{IF}u}\right]e^{-\lambda_\text{IF}(t-s)}ds\\ &=&\frac{1-K_\text{IF,MPF}}{t}\int_0^te^{-\lambda_\text{IF}s}e^{-\lambda_\text{IF}(t-s)}ds +\frac{K_\text{IF,MPF}}{t}\int_0^te^{-\lambda_\text{IF}u}e^{-\lambda_\text{IF}(t-s)}ds\\ &=&\frac{1-K_\text{IF,MPF}}{t}e^{-\lambda_\text{IF}t}\int_0^t ds +\frac{K_\text{IF,MPF}}{t}e^{-\lambda_\text{IF}t}\int_0^te^{-\lambda_\text{IF}(u-s)}ds\\ \end{eqnarray} \tag{224.3} $$ ここで、右辺第2項において、$u=s\bmod\tau$より、$s=i\tau+u, i=0,1,...,k-1, t=k\tau$とおいて、$s$を$u$と$i$で表し $$ \img[-1.35em]{/images/withinseminar.png} \tag{224.4} $$ を計算すると、 $$ (224.4)=\sum_{i=0}^{k-1}\int_0^\tau e^{\lambda_\text{IF}i\tau}du =\sum_{i=0}^{k-1}e^{\lambda_\text{IF}i\tau}\int_0^\tau du =\tau\sum_{i=0}^{k-1}e^{\lambda_\text{IF}i\tau} \tag{224.5} $$

ここで、等比数列の和及びMaclaurin展開の1次近似より、 $$ \require{cancel} (224.5)=\tau\frac{1-e^{\lambda_\text{IF}k\tau}}{1-e^{\lambda_\text{IF}\tau}} =\tau\frac{1-e^{\lambda_\text{IF}t}}{1-e^{\lambda_\text{IF}\tau}} \approx\bcancel{\tau}\frac{\bcancel{\lambda_\text{IF}}t-\frac{1}{2}\lambda_\text{IF}^\bcancel{2}t^2}{\bcancel{\lambda_\text{IF}}\bcancel{\tau}-\frac{1}{2}\lambda_\text{IF}^\bcancel{2}\tau^\bcancel{2}} =\frac{t-\frac{1}{2}\lambda_\text{IF}t^2}{1-\frac{1}{2}\lambda_\text{IF}\tau}\\ \approx\left(t-\frac{1}{2}\lambda_\text{IF}t^2\right)\left(1+\frac{1}{2}\lambda_\text{IF}\tau\right) \tag{224.6} $$ であるから、(224.6)及び(224.4)の結果を(224.3)に用いれば、 $$ (224.3)\approx\frac{1-K_\text{IF,MPF}}{\bcancel{t}}e^{-\lambda_\text{IF}t}\bcancel{t} +\frac{K_\text{IF,MPF}}{\bcancel{t}}e^{-\lambda_\text{IF}t}\bcancel{t}\left(1-\frac{1}{2}\lambda_\text{IF}t\right)\left(1+\frac{1}{2}\lambda_\text{IF}\tau\right)\\ \tag{224.7} $$ ここで、$\lambda_\text{IF}^2\approx0$と置いて、 $$ (224.7)\approx\left(1\bcancel{-K_\text{IF,MPF}}\right)e^{-\lambda_\text{IF}t} +K_\text{IF,MPF}e^{-\lambda_\text{IF}t}\left(\bcancel{1}-\frac{1}{2}\lambda_\text{IF}(t-\tau)\right)\\ =e^{-\lambda_\text{IF}t}-\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}(t-\tau)e^{-\lambda_\text{IF}t} =\left(1-\frac{1}{2}K_\text{IF,MPF}\lambda_\text{IF}(t-\tau)\right)R_\text{IF}(t) \tag{224.8} $$ 以上から、$s$を消去して$t$で表すことができました。


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax. If you include an ad such as http://, it will be invalidated by our AI system.

Please enter the numbers as they are shown in the image above.