20 |
合成カバレージの証明 |
IFとSMのそれぞれがお互いのレイテントフォールトカバレージを持つとして、$K_\text{IF,DPF}$及び$K_\text{SM,DPF}$で表します。前記事で記載したように、 $$ \begin{eqnarray} \left\{ \begin{array}{l} K_\text{IF,DPF}=\Pr\{\text{IF detectable}\}\\ K_\text{SM,DPF}=\Pr\{\text{SM detectable}\} \end{array} \right. \end{eqnarray} \tag{485.1} $$
ここで、IFとSMの合体エレメント$\text{IF}\cup\text{SM}$を考えると、合体エレメントのレイテントカバレージ$K_\text{DPF}$は、IFに対してはSM、SMに対してはIFのカバレージです。従って、合体エレメントが単一フォールトしても、IFのフォールトの場合はSMのカバレージ、SMのフォールトの場合はIFのカバレージとなり、合体カバレージは一切棄損しません。よって、 $$ \Pr\{(\text{IF}\cup\text{SM) detectable}\}=\Pr\{\text{IF detectable}\cup\text{SM detectable}\}\\ =\Pr\{\text{IF detectable}\}+\Pr\{\text{SM detectable}\} -\Pr\{\text{IF detectable}\}\Pr\{\text{SM detectable}\}\\ =K_\text{IF,DPF}+K_\text{SM,DPF}-K_\text{IF,DPF}K_\text{SM,DPF}\equiv K_\text{DPF} \tag{485.2} $$ 反対に、 $$ \Pr\{\overline{(\text{IF}\cup\text{SM) detectable}}\}=\Pr\{\overline{\text{IF detectable}}\cap\overline{\text{SM detectable}}\}\\ =(1-\Pr\{\text{IF detectable}\})(1-\Pr\{\text{SM detectable}\})=(1-K_\text{IF,DPF})(1-K_\text{SM,DPF})\\ =1-K_\text{DPF} \tag{485.3} $$
なお、本稿はRAMS 2023に投稿中のため一部を秘匿していますが、論文公開後の2023年2月頃に開示予定です。RAMS 2023が終了したため、秘匿部分を開示します。