Posts Tagged with "ISO 26262"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.
posted by sakurai on September 8, 2020 #311

「ISO 26262第2版解説書」(日本規格協会)のPMHF式の続きです。

恐らく、パラメータ$t$, $t'$は、$t$が最初のSMのフォールトが起きた時刻、$t'$がVSGとなる2つ目のIFのフォールトが起きた時刻だと思われます。

正しい定式化

VSGとなるIFに関する$t'$の時の確率密度を$t$から$T_\text{lifetime}$まで積分し、$t$で表します。次に$t$について0から$T_\text{lifetime}$までSMに関する確率密度を積分します。 $$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}K_\text{IF,DPF}f_\text{IF}(t)\left(\int_0^t(1-K_\text{SM,MPF})f_\text{SM}(t')dt'\right)dt\\ =\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}K_\text{IF,DPF}f_\text{IF}(t)(1-K_\text{SM,MPF})F_\text{SM}(t)dt\\ \approx K_\text{IF,DPF}(1-K_\text{SM,MPF})\cdot\frac{1}{2}\lambda_\text{IF}\lambda_\text{SM}T_\text{lifetime}\\ =\frac{1}{2}\lambda_\text{IF,DPF}\lambda_\text{SM,DPF,lat}T_\text{lifetime} \tag{311.1} $$ これは図104.2の初版PMHF式(パターン1, 2のみ)の、DPFにおけるパターン1に相当する部分と(IF⇒mと読み替えることにより)正確に一致します。

図%%.1
図311.1 1st edition規格第1式

なおISO規格では、数値の小数点を,(カンマ)で表すフランス式の記法で書かれていることに注意します。以下はWikipediaより。

小数点表記の、国家や言語による差異は重大な誤解が危惧されるので、国際標準を策定するISOやIECなどは、英語を含む全ての言語表記でフランス式を統一的に用いると定めている。


左矢前のブログ 次のブログ右矢

posted by sakurai on September 7, 2020 #310

「ISO 26262第2版解説書」(日本規格協会)のPMHF式の続きです。

そもそもの(309.2)式ですが、意味を考えてみます。まずSMとIFのフォールトは独立なので、SMとIFの確率は積で表されるのは正しいです。一方で独立ではないIF同志の確率が積で表されるところが誤っています。具体的には、時刻$t$から$T_\text{lifetime}$までの、IFの故障確率は、遷移確率が故障率$\times dt$となるため、 $$ \int_t^{T_\text{lifetime}}\Pr\{\text{IF fails in }(t', t'+dt]\ \cap\ \text{IF not failed till }t'\}\\ =\int_t^{T_\text{lifetime}}\Pr\{\text{IF fails in }(t', t'+dt]\ | \text{IF not failed till }t'\}\cdot\Pr\{\text{IF not failed till }t'\}\\ =\int_t^{T_\text{lifetime}}\lambda_\text{IF}R_\text{IF}(t')dt'=\int_t^{T_\text{lifetime}}f_\text{IF}(t')dt' \tag{310.1} $$ となるはずです。(310.2)は独立ではない事象を確率の積をとり、 $$ \int_t^{T_\text{lifetime}}\Pr\{\text{IF fails in }(t', t'+dt]\ \cap\ \text{IF not failed till }t'\}\\ =\int_t^{T_\text{lifetime}}\Pr\{\text{IF fails in }(t', t'+dt]\}\cdot\Pr\{\text{IF not failed till }t'\}\}\ \ \ \ ※1\\ =\int_t^{T_\text{lifetime}}f_\text{IF}(t')R_\text{IF}(t')dt'\\ =\int_t^{T_\text{lifetime}}f_\text{IF}(t')R_\text{IF}(\color{red}{t})dt'\ \ \ \ ※2\tag{310.2} $$ ※1 独立で無い事象の積としている
※2 積分変数を勝手に変更している

としているところが疑問です(疑問2, 3)。


左矢前のブログ 次のブログ右矢

posted by sakurai on September 4, 2020 #309

第2版でのPMHF式の改訂

ISO 26262第2版になり、PMHF式が改訂されました。第1版にはなかったパターン3,4が加わった理由は、例えば冗長システムのように、IFのフォールトがレイテントになる場合を考慮したものだと認識していました。このたび「ISO 26262第2版解説書」(日本規格協会)を購入し、その背景等の情報が掲載されていたため、検討します。

さて、上記解説書によれば、パターン3, 4が加わった理由は、「フォールトトレラントが要求されるアイテムの場合では、それ以外の順序、状況も想定できる」とあります。それ、というのは第1版の前提の意味であり、「安全機構、意図した機能の順でフォールトが発生する場合」とあります。すなわち、それ以外というのは、意図機能(IF)、安全機構(SM)の順番でフォールトが発生する場合であり、IFのフォールトがレイテントとなる場合に他なりません。これは弊社論文で2017年に指摘していたとおり、初版のPMHF式は冗長システムに対応していなかったことを裏書きします。

解説書には、今まで謎だったPMHF式の導出過程が載っていたので、それを解析します。

パターン1

図309.1は、第1版にも存在した、パターン1=「安全機構、意図した機能の順でフォールトが発生する場合で安全機構のフォールトが検出されない場合」です。

図%%.1
図309.1 パターン1

パターン1の導出過程を、記法を弊社と合わせたものを示します。弊社では先に$T_\text{lifetime}$で割るため、 $$ \frac{1}{T_\text{lifetime}}F_\mathrm{DPF,SM_\text{latent}\rightarrow IF}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\left((1-K_\text{SM,MPF})f_\text{SM}(t)\\ \cdot\int_t^{T_\text{lifetime}}K_\text{IF,DPF}f_\text{IF}(t')dt'\cdot R_\text{IF}(t)\right)dt \tag{309.1} $$ そもそもこの式の成立に問題がありそうですが、それはさておき、式変形を辿ってみます。まず、(309.1)においてIFに関する演算を先に実行すれば、 $$ \require{cancel} \int_t^{T_\text{lifetime}}K_\text{IF,DPF}f_\text{IF}(t')dt'\cdot R_\text{IF}(t)\\ =K_\text{IF,DPF}\left(F_\text{IF}(T_\text{lifetime})-F_\text{IF}(t)\right) R_\text{IF}(t)\\ =K_\text{IF,DPF}\left((\bcancel{1}-e^{-\lambda_\text{IF}T_\text{lifetime}})-(\bcancel{1}-e^{-\lambda_\text{IF}t})\right)e^{-\lambda_\text{IF}t}\\ \approx\left(\lambda_\text{IF,DPF}(T_\text{lifetime}-t)\right)(1-\lambda_\text{IF}t) \tag{309.2} $$ (309.2)を(309.1)に代入して、 $$ \frac{1}{T_\text{lifetime}}F_\mathrm{DPF,SM_\text{latent}\rightarrow IF}\\ =\frac{1}{T_\text{lifetime}}(1-K_\text{SM,MPF})\int_0^{T_\text{lifetime}}f_\text{SM}(t)\lambda_\text{IF,DPF}(T_\text{lifetime}-t)(1-\lambda_\text{IF}t)dt \tag{309.3} $$ これと図309.1の2行目を比較すると、なぜか、 $$ \int_0^{T_\text{lifetime}}\color{red}{f_\text{SM}(t)}dt=\int_0^{T_\text{lifetime}}\color{red}{\lambda_\text{SM}}dt $$ と式変形しているようです(疑問1)。左辺の$f_\text{SM}(t)$に$R_\text{SM}(t)$をかければこうなりますが、$R_\text{SM}(t)$は式中に存在しないので、単純な計算ミスでしょうか?そうでなく、無理やり$R_\text{SM}(t)\approx1$を用いたと考えても、一方で$R_\text{IF}(t)$を計算しているのは片手落ちです。


左矢前のブログ 次のブログ右矢

posted by sakurai on September 3, 2020 #308

FTA

A. 定量的な FTA の適用可能性と使用の制限

PMHF論文das2016$\dagger$の続きです。

以下の段落では一般論を述べています。

Quantitative methodologies are a useful tool in safety assurance processes, where the objective is to reduce risk to a quantifiably acceptable level by estimating the rates of occurrence of hazardous events. Standards such as IEC 61508 are based strongly on this principle. Given such an estimate of the probability of safety-related hazards, the risk can in principle be mitigated to an acceptably low level.

定量的方法論は、危険事象の発生率を推定することにより、リスクを定量的に許容できるレベルまで低減することを目的とした安全保証プロセスにおいて有用なツールである。IEC 61508 などの規格は、この原則に強く基づいている。安全に関連するハザードの発生確率をこのように推定すれば、原則としてリスクは許容可能な低レベルにまで軽減することができる。

以下の段落ではシステマティックフォールトを混ぜて議論していますが、混ぜるとわけがわからなくなります。対処する手法が異なるからです。ここではランダムハードウェア故障に絞って議論したほうが良いでしょう。  

However, there are several critical limitations to such methods that must be recognized. While random failures in electronic hardware may be modeled with probabilistic methods, systematic failures (for example in deterministic software) cannot be modeled in this way. This may lead the analyst to under-represent or overlook important systematic failures [8]. There is wide variability in underlying data available for the reliability failure of electronic components, which in turn leads to calculations with a relatively wide range of uncertainty. There is also evidence of a tendency for the analyst to believe in the independence of events which are represented independently in the FTA, while objective observation would find a correlation between events [9]. ISO 26262 takes steps to mitigate these limitations, for example by recognizing the primacy of process adherence in preventing and avoiding systematic faults, which are not generally quantifiable by probabilistic methods. It is important to remember that analyst judgment is a critical factor in the success of a quantified FTA. The analysis is neither a formal proof nor a validation of safety, but merely a structured record of the analyst's best understanding.

しかし、このような方法には、認識しなければならないいくつかの重大な限界がある。電子ハードウェアのランダムな故障は確率論的手法でモデル化することがでるが、系統的な故障(例えば決定論的ソフトウェア)はこの方法ではモデル化できません。このため、解析者は重要なシステマティックな故障を過小評価したり、見落としたりする可能性がありる[8]。電子部品の信頼性故障について利用可能な基礎データには大きなばらつきがあり、その結果、比較的広い範囲の不確実性を伴う計算が行われることになる。また、客観的な観察ではイベント間の相関関係を見つけることができるのに対し、分析者は、FTA で独立して表現されているイベントの独立性を信じる傾向があるという証拠もある[9]。ISO 26262 は、確率論的手法では一般的に定量化できないシステマティックな欠陥の予防と回避において、プロセスの堅持が重要であることを認識するなど、これらの制限を緩和するための措置を講じている。分析者の判断が定量化された FTA を成功させるための重要な要素であることを覚えておくことが重要である。解析は、安全性の正式な証明でも検証でもなく、解析者の最善の理解を構造化した記録に過ぎない。


$\dagger$N. Das and W. Taylor, "Quantified fault tree techniques for calculating hardware fault metrics according to ISO 26262," 2016 IEEE Symposium on Product Compliance Engineering (ISPCE), Anaheim, CA, 2016, pp. 1-8, doi: 10.1109/ISPCE.2016.7492848.


左矢前のブログ 次のブログ右矢

posted by sakurai on September 2, 2020 #307

FTA

PMHF論文das2016$\dagger$の続きです。

FTAの説明と、それによるPMHFの導出の概略を述べています。

FTA is a logical combination of intermediate events and basic events, which can be assembled using AND and OR logical operators to analyze the effects of component faults on system failures. In a safety analysis, the FTA typically begins with a top-level event representing a major hazardous event, and/or the violation of a safety goal or Functional Safety Requirement, as defined in ISO 26262. The analysis is then performed by deducing what conditions or events would lead to the top-level event, and in what logical combination. The method has been in use in industrial settings for several decades (see for example [3], [4], [5]). More recently, the method has been applied to automotive systems [6], [7] and suggested for wider use as an analysis framework. In some cases, the FTA may be qualitative in nature. If probabilities of the underlying lower-level events can be estimated, then an estimate of the probability can be made for the top-level event. The PMHF is just such a quantitative estimation.

FTA は、中間イベントと基本イベントを論理的に組み合わせたもので、AND と OR 論理演算子を使って組み立てることで、コンポーネントの故障がシステムの故障に与える影響を分析することができる。安全解析では、FTAは通常、主要な危険イベントや、ISO 26262で定義されている安全目標や機能安全要件の違反を表すトップレベルのイベントから始まる。次に、どのような条件や事象がトップレベルの事象につながるのか、どのような論理的な組み合わせで行われるのかを推論することで分析が行われる。この手法は、数十年前から産業界で使用されている (例えば [3], [4], [5] を参照)。最近では、この手法が自動車システムに適用され [6], [7]、解析フレームワークとしての幅広い利用が提案されています。いくつかのケースでは、FTA は定性的な性質を持っています。もし、基礎となる下位レベルのイベントの確率が推定できれば、上位レベルのイベントの確率を推定することができます。PMHF はまさにそのような定量的な推定である。

本論文は、初版の規格を別にすればPMHF式とFTAを結び付けた初めての論文で、重要論文です。しかしながら1st editionの範囲に留まっています。1st editionの範囲とは、IFがアンリペアラブルという意味です。従って、冗長サブシステムには用いることができません。


$\dagger$N. Das and W. Taylor, "Quantified fault tree techniques for calculating hardware fault metrics according to ISO 26262," 2016 IEEE Symposium on Product Compliance Engineering (ISPCE), Anaheim, CA, 2016, pp. 1-8, doi: 10.1109/ISPCE.2016.7492848.


左矢前のブログ 次のブログ右矢

posted by sakurai on September 1, 2020 #306

イントロダクション

PMHF論文das2016$\dagger$の続きです。

FTAの説明とフレームワークの必要性を述べています。

Fault Tree Analysis (FTA) is a method often proposed for calculation of the PMHF in real-world systems. However, FTA is a very general method, subject to a wide range of interpretations and techniques depending on the objectives of a given problem, the type of failures & faults being considered, and the terminology employed by various industries. There is not yet an accurate and well-explained practical guide to the specific techniques appropriate for PMHF calculation in the automotive industry. For example, large and complex systems, such as those that comprise real-world automotive products, are often difficult to capture in an FTA in a systematic and repeatable way. The use of diagnostic coverage (D.C.) (e.g., by an imperfect safety mechanism which may detect some but not all element faults) is often utilized in hardware metric calculations. However, D.C. concepts are not widely clarified in the industry literature, leaving a gap in understanding for many FTA practitioners. At lower levels of the FTA, specific frameworks for calculating the effect of single-point and dual-point faults (including dual-point latent faults) are necessary to obtain a correct PMHF estimation. All these topics will be addressed here along with a worked automotive example.

フォールトツリー解析(FTA)は、実世界のシステムにおけるPMHFの計算のためにしばしば提案される手法です。しかし、FTAは非常に一般的な手法であり、与えられた問題の目的、考慮される故障や故障の種類、そして様々な業界で採用されている用語に応じて、幅広い解釈や技術の対象となっています。自動車産業におけるPMHF計算に適した特定の技術については、正確かつ十分に説明された実用的なガイドはまだ存在しません。例えば、実際の自動車製品を構成するような大規模で複雑なシステムは、体系的で再現性のある方法でFTAに取り込むことが困難な場合が多い。診断カバレッジ(D.C.)(例えば、一部の要素の故障は検出できるが、すべての要素の故障は検出できない不完全な安全機構)の使用は、しばしばハードウェアメトリックの計算に利用されます。しかし、D.C.の概念は業界の文献では広く明確にされておらず、多くのFTA実務者にとっては理解にギャップがあります。FTA の低レベルでは、正しい PMHF 推定を得るためには、単点および二点故障(二点潜伏故障を含む)の影響を計算するための特定のフレームワークが必要となります。ここでは、これらすべてのトピックについて、実際の自動車の例を挙げながら解説します。


$\dagger$N. Das and W. Taylor, "Quantified fault tree techniques for calculating hardware fault metrics according to ISO 26262," 2016 IEEE Symposium on Product Compliance Engineering (ISPCE), Anaheim, CA, 2016, pp. 1-8, doi: 10.1109/ISPCE.2016.7492848.


左矢前のブログ 次のブログ右矢

PMHF論文das2016(2)

posted by sakurai on August 31, 2020 #305

イントロダクション

PMHF論文das2016$\dagger$の続きです。

以下の段落はISO 26262の概要です。

The international standard ISO 26262 “Road vehicles - Functional safety” has been released in final form since late 2011 [1]. It provides a standardized set of processes and methods to assure the functional safety of electrical and electronic systems in the automotive domain. The standard is an evolution of the IEC 61508 functional safety standard, applied specifically to the automotive realm [2].

国際規格ISO 26262「道路運送車両-機能安全」は、2011年後半から最終版としてリリースされている[1]。この規格は、自動車分野における電気・電子システムの機能安全を保証するためのプロセスと手法を標準化したものである。この規格は、IEC 61508の機能安全規格を発展させたもので、特に自動車分野に適用されている[2]。

以下の段落はISO 26262の説明です。

ISO 26262 requires a variety of processes and frameworks for safety management, safety concept development, requirements flow-down, and verification & validation activities. The standard also requires quantified metrics to be calculated for safety-related systems.

ISO 26262 は、安全管理、安全コンセプト開発、要求事項のフローダウン、検証・検証活動のためのさまざまなプロセスやフレームワークを要求している。また、安全関連システムの定量化されたメトリクスの計算も要求している。

以下の段落はPMHFの説明です。

Of particular interest is the Probabilistic Metric for Hardware Failure (or PMHF), which represents a calculated estimate of the rate of hazard occurrence due to random hardware failures. This value must be calculated for systems rated at a high Automotive Safety Integrity Level (or ASIL2). Specifically, systems rated at ASIL C or ASIL D must achieve targets such as those proposed by the standard and listed in Table 1.

特に関心が高いのは、ハードウェア故障の確率的指標(PMHF)であり、これは、ランダムなハードウェア故障によるハザード発生率の計算された推定値を表している。 この値は、高いAutomotive Safety Integrity Level(またはASIL2)で評価されたシステムのために計算されなければならない。具体的には、ASIL C または ASIL D に格付けされたシステムは、規格で提案され、表 1 に記載されているような目標を達成しなければならない。


$\dagger$N. Das and W. Taylor, "Quantified fault tree techniques for calculating hardware fault metrics according to ISO 26262," 2016 IEEE Symposium on Product Compliance Engineering (ISPCE), Anaheim, CA, 2016, pp. 1-8, doi: 10.1109/ISPCE.2016.7492848.


左矢前のブログ 次のブログ右矢

PMHF論文das2016

posted by sakurai on August 28, 2020 #304

次にPMHF論文das2016$\dagger$です。この論文は弊社の論文を除き、例外的に1st edition Part10に掲載されているPMHF式に準拠しているものです。それだけでなく、FTAによりPMHF式をどのように実装するかが述べられている実践的なものです。残念ながら、2nd edition発行前の論文であるため、1st editionの範囲でしかなく、冗長サブシステムに対応する形式にはなっていません。

アブストラクト

早速アブストラクトを見てみます。

Since its introduction in 2011, the ISO 26262 standard has provided state-of-the-art methodology for achieving the functional safety of automotive electrical and electronic systems. Among other requirements, the standard requires estimation of quantified metrics such as the Probabilistic Metric for Hardware Failure (PMHF) using quantitative failure analysis techniques. While the standard provides some brief guidance, a complete methodology to calculate the PMHF in detail has not been well described in the literature. This paper will draw out several key frameworks for successfully calculating the probabilistic metric for hardware failure using Fault Tree Analysis (FTA). At the top levels of the analysis, methods drawn from previous literature can be used to organize potential failures within a complex multifunctional system. At the lower levels of the FTA, the effects of all fault categories, including dual-point latent and detected faults, can be accounted for using appropriate diagnostic coverage and proof- test interval times. A simple example is developed throughout the paper to demonstrate the methods. Some simplifications are proposed to estimate an upper bound on the PMHF. Conclusions are drawn related to the steps and methods employed, and the nature of PMHF calculation in practical real-world systems.

ISO 26262規格は、2011年に導入されて以来、自動車の電気・電子システムの機能安全性を実現するための最先端の方法論を提供してきた。他の要求事項の中でも、定量的な故障解析技術を用いて、ハードウェア故障の確率的指標(PMHF)のような定量的な指標を推定することが求められている。この規格では、いくつかの簡単なガイダンスを提供しているが、PMHF を詳細に計算する完全な方法論は、文献に十分に記載されていない。この論文では、Fault Tree Analysis(FTA)を使用してハードウェア故障の確率的メトリックを計算するためのいくつかの重要なフレームワークを紹介する。解析の最上位レベルでは、複雑な多機能システム内の潜在的な故障を整理するために、これまでの文献から導き出された手法を使用することができる。FTA の下位レベルでは、デュアルポイントの潜在故障と検出された故障を含むすべての故障カテゴリの影響を、適切な診断カバレッジとプルーフテスト間隔時間を使用して説明することができる。本論文では、この方法を実証するために、全体を通して簡単な例を示している。PMHFの上限値を推定するために、いくつかの単純化を提案した。また、採用されたステップと手法、及び実用的な実世界のシステムにおけるPMHF計算の性質に関連した結論が示されている。

このアブストラクトに書かれているように、ISO 26262 Part 10ではPMHF式の結果しか書かれておらず、導出過程が書かれていません。さらに初版にはあった定量FTAによるPMHFの計算方法が、なぜか第2版では削除されています。従って、定量FTAによる正確なPMHF計算フレームワークは業界で必要とされており、それが今回弊社からRAMS 2021に投稿した論文です。これは現時点では非公開であるため、来年1月のRAMS 2021での発表以降に公開する予定です。


$\dagger$N. Das and W. Taylor, "Quantified fault tree techniques for calculating hardware fault metrics according to ISO 26262," 2016 IEEE Symposium on Product Compliance Engineering (ISPCE), Anaheim, CA, 2016, pp. 1-8, doi: 10.1109/ISPCE.2016.7492848.


左矢前のブログ 次のブログ右矢

posted by sakurai on August 27, 2020 #303

論文ward2012$\dagger$の続きです。以下は誤りの例として論文中で取り上げているものです。まず、REQ 32の安全要求

REQ 32: Failure of the road-wheel actuation shall not lead to an absence of directional control of the vehicle. [ASILD]

REQ 32: 車輪の作動の故障により、車両の方向制御ができなくなることがあってはならない。 [ASIL D]

を誤って次のように冗長な要求REQ 32.1, REQ 32.2に分解しました。

REQ 32.1: The front road-wheel actuation shall provide directional control of the vehicle according to ECU commands. [ASIL C(D)]

REQ 32.1: 前輪駆動は、ECUの指令に従って車両の方向制御を行うこと。 [ASIL C(D)]

及び

REQ 32.2: The rear road-wheel actuation shall provide directional control of the vehicle according to ECU commands. [ASIL A(D)]

REQ 32.2: 後輪駆動は、ECUの指令に従って車両の方向制御を行うこと。 [ASIL A(D)]

分解された要求(REQ 32.1又は32.2)単独で初期安全要求(REQ 32)を満たしていないので、冗長な要求ではありません。例えば、前輪の方向制御が狂う故障が起きた場合に、後輪の方向制御のみで正常に車両を制御できるとは思えません。論文中にもあるように、例えば前輪が左一杯に舵が切られ固着していた場合等です。このような場合は後輪操舵だけで正常に走行することは困難です。さらに、ECUが共通であるため、独立なエレメント同士にもなっていません。

これはASILデコンポジションをエレメントのデコンポジションと誤って思い込んだ例です。論文でも主張しているように、エレメントを分解するのではなく、安全要求を(冗長、独立に)分解します。

この後に、REQ 49の分解例として、センサが3冗長の時、2段階のASILデコンポジションを実施する例が挙げられていますが、省略します。

最後に、図303.1は論文の誤りです。故障率を2乗すると次元が[$1/H^2$]となってしまい、$\lambda_1\lambda_2 T_\text{Lifetime}$としなければ次元が合いません。故障率と故障確率を混同しているようです。

図%%.1
図303.1 故障率に対する要求分解効果


$\dagger$Ward, D. D., & Crozier, S. E. (2012). The uses and abuses of ASIL decomposition in ISO 26262. 7th IET International Conference on System Safety, Incorporating the Cyber Security Conference 2012.


左矢前のブログ 次のブログ右矢

posted by sakurai on August 26, 2020 #302

論文ward2012$\dagger$の続きです。 2番目の例としてより複雑なSteer-by-wireを取り上げます。

In this example (which is intended to illustrate principles and not represent a real design) a 4-wheel steer-by-wire system is under development. Here, the hand-wheel input is sensed and processed into commands for control of the front and rear axle actuators. A third actuator provides haptic feedback to the driver at the hand-wheel.

この例では(原理を説明するためのものであり、実際の設計を示すものではありません)4輪ステアバイワイヤシステムが開発されています。ここでは、ステアリングの入力が感知され、フロントアクスルとリアアクスルのアクチュエータを制御するためのコマンドに処理されます。第3のアクチュエーターは、ステアリングでドライバーに触覚フィードバックを提供します。

図302.1はSteer-by-wireのシステムブロック図です。

図%%.1
図302.1 Steer-by-wire

このシステムには多くの安全目標が設定されており、要求分解をしていった結果、以下の要求がステアリングセンシングと車輪アクチュエーション(項目の他の要素の中で)に課せられています。

REQ 32: Failure of the road-wheel actuation shall not lead to an absence of directional control of the vehicle. [ASILD]

REQ 32: 車輪の作動の故障により、車両の方向制御ができなくなることがあってはならない。 [ASIL D]

 

REQ 49: Failure of the hand-wheel sensing shall not lead to an incorrect indication of the driver’s intended direction to the ECU [ASIL D]

REQ 49: ステアリングセンシングの故障により、ECUに運転者の意図する方向が正しく表示されないことがあってはならない。 [ASIL D]


$\dagger$Ward, D. D., & Crozier, S. E. (2012). The uses and abuses of ASIL decomposition in ISO 26262. 7th IET International Conference on System Safety, Incorporating the Cyber Security Conference 2012.


左矢前のブログ 次のブログ右矢


ページ: