Posts Tagged with "PUA"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.
posted by sakurai on October 16, 2018 #66

ISO/TR 12489:2013(E)において、信頼性用語の定義がまとめてあるため、それを記載します。ただし、弊社の考えを交えており、そのまま引用しているわけではありません。以下に$X_\text{item}$をアイテム$item$の無故障運転継続時間(failure free operating time)とするとき、

信頼度(Reliability)

$$ R_\text{item}(t):=\Pr\lbrace\text{item not failed in }(0, t]\rbrace=\Pr\lbrace\mathrm{item\ up\ at\ }t\rbrace=\Pr\lbrace t\lt X_\text{item}\rbrace \tag{66.1} $$ 非修理系システムで、時刻$t$までに一度も故障していない確率。非修理系なので、一度でも故障すると故障しっぱなしになるため、一度も故障していない確率です。

不信頼度(Unreliability, Cumulative Distribution Function, CDF)

$$ F_\text{item}(t):=\Pr\lbrace\mathrm{item\ failed\ in\ }(0, t]\rbrace=\Pr\lbrace\mathrm{item\ down\ at\ }t\rbrace=\Pr\lbrace X_\text{item}\le t\rbrace \tag{66.2} $$ 非修理系システムで、時刻$t$までに故障する確率。

非修理系なので、一度でも故障すると故障しっぱなしになるため、時刻が0からtまでに故障したことがある確率です。等号は有っても無くても値は変わりません。

故障密度(Probability Density, Probability Density Function, PDF)

$$ f_\text{item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace\mathrm{item\ fails\ in\ }(t, t+dt]\cap\mathrm{item\ up\ at\ } t\rbrace}{dt}=\frac{dF_\text{item}(t)}{dt} \tag{66.3} $$ 又は、微小故障確率形式として、 $$ f_\text{item}(t)dt=\Pr\{\mathrm{item\ fails\ in\ }(t, t+dt]\cap\mathrm{item\ up\ at\ } t\}\\ =\Pr\lbrace t\lt X_\text{item}\le t+dt\rbrace\\ =\Pr\{X_\text{item}\in dt\} \tag{66.4} $$ 非修理系システムで、時刻$t$で、単位時間あたりに故障する確率。正確には、時刻$t$から$t+dt$までに故障する微小確率を$dt$で割り、単位時間あたりに直したもの。

【証明】 条件付き確率公式及び、確率の加法定理を用いて、 $$ f_\text{item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace t\lt X_\text{item}\le t+dt\rbrace}{dt} \\ =\lim_{dt \to 0}\frac{\Pr\lbrace t\le X_\text{item}\rbrace+\Pr\lbrace X_{item}\le t+dt\rbrace - \Pr\lbrace t\le X_\text{item} \cup X_\text{item}\le t+dt\rbrace}{dt} \\ =\lim_{dt \to 0}\frac{R(t)+F(t+dt)-1}{dt}=\lim_{dt \to 0}\frac{F(t+dt)-F(t)}{dt}=\frac{dF_\text{item}(t)}{dt} \tag{66.5} $$

(瞬間)故障率(Failure Rate)

$$ \lambda_\text{item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace\mathrm{item\ fails\ in\ }(t, t+dt]\ |\ \mathrm{item\ not\ failed\ at\ } t\rbrace}{dt}=\frac{f_\text{item}(t)}{R_\text{item}(t)} \tag{66.6} $$ 非修理系システムで、時刻$t$で稼働している条件において、単位時間あたりに故障する条件付き確率。正確には、時刻$t$から$t+dt$までに故障する条件付き確率を$dt$で割り、単位時間あたりとしたもの。ISO 26262の場合は、確率分布が指数分布のため、故障率は定数として扱います。

【証明】 条件付き確率の式及び、上記$f_\text{item}(t)$の式を用いて $$ \lambda_\text{item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace X_\text{item}\le t+dt \cap t \le X_\text{item}\rbrace}{dt}\frac{1}{\Pr\lbrace t \le X_\text{item}\rbrace}=\frac{f_\text{item}(t)}{R_\text{item}(t)} \tag{66.7} $$ 又は、微小故障条件付き確率形式として、 $$ \lambda_\text{item}(t)dt=\Pr\lbrace\mathrm{item\ fails\ in\ }(t, t+dt]\ |\ \mathrm{item\ not\ failed\ at\ } t\rbrace\\ =\Pr\{t\lt X_\text{item}\le t+dt\ |\ t\le X_\text{item}\}\\ =\Pr\{X_\text{item}\in dt\ |\ t\le X_\text{item}\} \tag{66.8} $$

稼働度((Point) Availavility)

$$ A_\text{item}(t):=\Pr\lbrace\mathrm{item\ up\ at\ }t\rbrace \tag{66.9} $$ 修理系システムで、時刻$t$で稼働している確率。

不稼働度((Pont) Unavailavility, PUA)

$$ Q_\text{item}(t):=\Pr\lbrace\mathrm{item\ down\ at\ }t\rbrace=1-A_\text{item}(t) \tag{66.10} $$ 修理系システムで、時刻$t$で不稼働な確率。

不稼働密度((Point) Unavailability Density, PUD)

$$ q_\text{item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace\mathrm{item\ down\ in\ }(t,t+dt]\cap\mathrm{item\ up\ at\ } t\rbrace}{dt} =\frac{dQ_\text{item}(t)}{dt} \tag{66.11} $$ 又は、微小不稼働確率形式として、 $$ q_\text{item}(t)dt=\Pr\lbrace\mathrm{item\ down\ in\ }(t,t+dt]\cap\mathrm{item\ up\ at\ } t\rbrace \tag{66.12} $$ 時刻$t$で単位時間あたりに不稼働になる確率。正確には、時刻$t$から$t+dt$までに不稼働になる微小確率を$dt$で割り、単位時間あたりに直したもの。failure frequency (故障頻度), unconditional failure intensity (UFI; 無条件故障強度), ROCOF(Rate of OCcurrence Of Failure)とも呼ばれる。

一方、PUDは修理系サブシステムが対象でかつ定期検査修理(PIR)が前提。

平均不稼働密度(Average PUD)

PUDの車両寿命間$T_\text{lifetime}$の平均値を求めると、平均不稼働密度(Average PUD)は、積分の平均値の定理より、 $$ \overline{q_\text{item}}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}q_\text{item}(t)dt=\frac{1}{T_\text{lifetime}}Q_\text{item}(T_\text{lifetime}) \tag{66.13} $$ AROCOFも同様な定義だが、平均不稼働密度(Average PUD)は修理系サブシステムが対象でかつ定期検査修理(PIR)が前提。

PFH(Probability of Failure per Hour)

注意:Probability of Failure per Hourは古い定義で現在はaverage failure frequency (平均故障頻度), average unconditional failure intensity (平均無条件故障強度)。

$$ PFH:=\overline{q_\text{item}}=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}q_\text{item}(t)dt=\frac{1}{T_\text{lifetime}}Q_\text{item}(T_\text{lifetime})\\ =\frac{1}{T_\text{lifetime}}\Pr\lbrace\mathrm{item\ down\ at\ }T_\text{lifetime}\rbrace, \text{ただし}T_\text{lifetimeは車両寿命} \tag{66.14} $$ PMHFも同様の定義だが、平均不稼働密度(Average PUD)は修理系サブシステムが対象でかつ定期検査修理(PIR)が前提。

Vesely故障率(Vesely Failure Rate)

修理系システムで、時刻$t$で稼働している条件において、単位時間あたりに不稼働になる条件付き確率。conditional failure intensity (条件付き故障強度)とも呼ばれる。

$$ \lambda_\text{v,item}(t):=\lim_{dt \to 0}\frac{\Pr\lbrace\mathrm{item\ down\ in\ }(t, t+dt]\ |\ \mathrm{item\ up\ at\ } t\rbrace}{dt}=\frac{q_\text{item}(t)}{A_\text{item}(t)} \tag{66.15} $$


以下はISO/TR 12489にはない確率関数です。

修理度(Repairability)

修理系システムで、時刻$t$において不稼働度が修理されるその割合。修理時間は無視できるものとする。 $$ M(t):=\Pr\lbrace\text{repaired at }t\ |\ \text{failed at }t\rbrace\tag{66.16} $$


左矢前のブログ 次のブログ右矢

posted by sakurai on September 10, 2018 #59

※この記事は2018年に書かれたものであり、基本的には変わりませんが最近の記事で詳細計算を行っています。

SMのアンナベイラビリティ(不稼働率、PUA)$Q_{SM}(t)$の導出

以前PMHF式を以下で導出しました。 https://fs-micro.com/post/show/id/10.html

ここでは再度PMHFの式を導出して行きますが、事前準備がいくつか必要になりますので、まず、修理系のアンナベイラビリティの公式を導きます。

まず、修理系とは何かを説明します。ISO 26262規格には修理の問題についてはっきり書いていませんが、1st SMが修理系となります。1st SMとは、1st order SMとも呼ばれ、主機能のSG侵害(安全目標侵害=VSG)を防止するためのSMです。一方で、主機能は非修理系です。

1st SMは、2nd SMにより定期的に検査され、故障だと判明した場合は直ちに修理されます。2nd SMとは2nd order SMとも呼ばれ、エレメントがレイテントフォールトとなるのを防止する安全機構です。規格にもあるとおり、修理周期は「検査周期($\tau_{SM}$)+ドライバーが修理工場へ運転して行く時間+修理にかかる時間」です。従って、修理周期=2nd SMの検査周期とみなせます。

規格にははっきり書かれていませんが、検査により故障と判明した部分については、修理され新品同様(as good as new)と見なされます。この検査による故障検出割合が重要であり、Part 10では定数値$K_{FMC,MPF}$で表されます。故障したうちの検出部分なので(59.1)のように条件付き確率と考えがちですが、 $$K_{FMC,MPF}=\Pr\lbrace \text{detectable}\ |\ \text{failed at }t \rbrace\tag{59.1}$$ 故障検出能力は確率的に決まるものではなく、アーキテクチャ的に決まるものだと考えるため、もともとの検出部分の故障について検出可能とします。 $$K_{FMC,MPF}=\Pr\lbrace \text{detectable} \rbrace\tag{59.2}$$ 検出された故障は全て修理されるものとします。 $$\Pr\lbrace \text{repaired}\ |\ \text{detected at }t\rbrace=1\tag{59.3}$$

次にアンナベイラビリティ$Q_{SM}(t)$とは、省略せずに言うとポイントアンナベイラビリティ(PUA)であり、修理系の不稼働率です。 確率の式で表せば、

PUA: $$Q_{SM}(t):=\Pr \lbrace \text{(repairable)SM down at }t \rbrace\tag{59.4}$$ のように、時刻$t$において不稼働である確率を意味します。

一方で、アベイラビリティの式は参考ページまたはBirolini教授の教科書を参照すれば、 $$ A(t):=R(t)+\int_0^t m(x)R(t-x)dx\tag{59.5} $$ であり、ここで、$A(t)$は時刻tにおけるポイントアベイラビリティ、$R(t)$は時刻tにおけるリライアビリティ(信頼度)、$m(t)$は時刻tにおけるリニューアル密度(修理密度)です。規格の特徴として、修理周期は教科書一般にあるように指数関数分布はとらず、定期的に$\tau_{SM}$毎に行われるため、以下の式が成立します。 $$A_{SM}(t)=R_{SM}(t)+K_{SM,FMC,MPF}F_{SM}(\tau_{SM})\sum_{i=0}^{n-1}R_{SM}(t-i\tau_{SM})\tag{59.6}$$

修理分$K_{SM,FMC,MPF}F_{SM}(\tau_{SM})$が時刻$t$の関数でないのは、検出能力$K_{FMC,MPF}$は一定で、かつ毎回の故障確率も一定で、検出した分は全て修理されるため、修理分が一定となるためです。 従って、SMのポイントアベイラビリティ式は以下のようになります。 $$A_{SM}(t)dt=\img[-1.35em]{/images/withinseminar.png}\tag{59.7}$$

これを1から引けば、SMのポイントアンアベイラビリティ(PUA)は以下のように求められます。

PUA: $$Q_{SM}(t)dt=\left[1-A_{SM}(t)\right]dt=\img[-1.35em]{/images/withinseminar.png}\tag{59.8}$$

(59.8)の両辺を時刻$t$で微分すれば、微分可能な$t$におけるPUD(Point Unavailability Density)が求められます。

PUD: $$q_{SM}(t)dt:=(\frac{dQ_{SM}(t)}{dt})dt=\img[-1.35em]{/images/withinseminar.png},\\ \ t\notin\{\tau_i=i\tau; i=1,2,...,n\}\tag{59.9}$$

※ここでの議論において、次に示すような形式的な記法を用いています。例えば、 $$f(t)=\lim_{dt\to +0}\frac{F(t+dt)-F(t)}{dt}=\frac{dF(t)}{dt}$$ と書くところを$dt$が無限小であることを前提として、 $$f(t)dt=dF(t)$$ としています。確率密度関数$f(t)$を求めるよりも、微小確率$f(t)dt$を求めるほうが、次での積分の記述が容易になるためです。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢


ページ: