Posts Tagged with "PMHF derivation"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.
posted by sakurai on February 4, 2020 #199

プレスリリースで案内のとおり、去る1月27日から4日間、米国カリフォルニア州パームスプリングスで開催された、RAMS 2020${}^{\dagger 1}$において、PMHF${}^{\dagger 2}$に関する論文を発表しました。論文の題名は"Generic Equations for a Probabilistic Metric for Random Hardware Failures According to ISO 26262"です。邦題は「ISO 26262に準拠したランダムハードウェア故障の確率的メトリクスの一般式」であり、PMHFを正確に評価することを可能にするものです。RAMS 2020は、IEEE RS${}^{\dagger 3}$が主催する、信頼性工学に関する世界最高レベルの国際学会です。

発表の内容は、IF${}^{\dagger 4}$及びSM${}^{\dagger 5}$から構成されるサブシステムにおいて、IFがISO 26262第1版に対応する修理不能なモデルと、第2版に対応する修理可能なモデルの2つを考案し、それに基づいたPMHF式を導出し、第1版とは一致、第2版とは不一致となることを示しました。次に第2版との不一致について、規格第2版のPMHFの過小評価と、EOTTI${}^{\dagger 6}$の過大評価を計算し、規格第2版は31倍もの過剰な設計制約となっていることを明らかにしたものです。

下の写真の向かって右はRAMS 2020のGeneral ChairであるDr. Julio Pulidoです。

図%%.1
図199.1 RAMS 2020にて

下の写真の左上はColloquim Session ChairであるJess Leszczynskiと、右上はPaper Session ChairであるDongmei Chenと、右下はProgram Committee ChairであるOm Yadavとの写真です。

図%%.2
図199.2 RAMS 2020にて

[追記]
論文の公開場所は、以下のIEEE Xploreです。
https://ieeexplore.ieee.org/document/9153704


${}^{\dagger 1}$RAMS 2020: The 66th Annual Reliability & Maintainability Symposium
${}^{\dagger 2}$PMHF: Probabilistic Metric for random Hardware Failures ⇒用語集
${}^{\dagger 3}$RS: Reliability Society
${}^{\dagger 4}$IF: Intended Functionarity ⇒用語集
${}^{\dagger 5}$SM: Safety Mechanism ⇒用語集
${}^{\dagger 6}$EOTTI: Emergency Operation Tolerance Time Interval⇒用語集


左矢前のブログ 次のブログ右矢

posted by sakurai on September 13, 2018 #60

ISO 26262のPMHFの導出の場合、微小確率の積分を実行する際に次の(60.1)及び(60.2)式が出てくるため、あらかじめ結果を導出しておき、後程積分公式として使用します。 $$ \frac{1}{T_{lifetime}}\int_0^{T_{lifetime}}F_{SM}(t) f_{M}(t)dt\tag{60.1} $$ 及び $$ \frac{1}{T_{lifetime}}\int_0^{T_{lifetime}}F_{SM}(u) f_{M}(t)dt,\ \ s.t.\ \ u:=t\bmod\tau\tag{60.2} $$ まず、(60.1)式に、$F_{SM}(t)=1-e^{-\lambda_{SM}t}$及び、$f_{M}(t)=\lambda_M e^{-\lambda_M t}$を代入し、 $$ \frac{1}{T_{lifetime}}\int_0^{T_{lifetime}}F_{SM}(t)f_{M}(t)dt=\frac{1}{T_{lifetime}}\int_0^{T_{lifetime}}(1-e^{-\lambda_{SM}t})\lambda_{M}e^{-\lambda_{M}t}dt\\ =\frac{\lambda_{M}}{T_{lifetime}}\int_0^{T_{lifetime}}e^{-\lambda_{M}t}dt-\frac{\lambda_{M}}{T_{lifetime}}\int_0^{T_{lifetime}}e^{-(\lambda_{SM}+\lambda_M)t}dt\tag{60.3} $$ (60.3)の右辺第1項は、 $$ \require{cancel} \text{1st term of RHS of (60.3)}=\frac{\bcancel{\lambda_{M}}}{T_{lifetime}}\left[\frac{e^{-\lambda_{M}t}}{-\bcancel{\lambda_{M}}}\right]^{T_{lifetime}}_0=\frac{1}{T_{lifetime}}(1-e^{-\lambda_{M}T_{lifetime}})\tag{60.4} $$ (60.3)の右辺第2項は、 $$ \text{2nd term of RHS of (60.3)}=-\frac{\lambda_{M}}{T_{lifetime}}\left[\frac{e^{-(\lambda_{SM}+\lambda_{M})t}}{-(\lambda_{SM}+\lambda_{M})}\right]^{T_{lifetime}}_0\\ =-\frac{\lambda_{M}}{T_{lifetime}(\lambda_{SM}+\lambda_{M})}\left[1-e^{-(\lambda_{SM}+\lambda_{M})T_{lifetime}}\right]\tag{60.5} $$ ここで$\lambda t\ll 1$の条件で$e^{-\lambda t}$のMaclaurin展開は $$e^{-\lambda t}=1-\lambda t + \frac{1}{2}\lambda^2 t^2-O((\lambda t)^3)$$となるため、$O((\lambda t)^3)\approx 0$と近似し、これを(60.4)及び(60.5)に代入すると(60.3)は、 $$ \frac{1}{T_{lifetime}}\int_0^{T_{lifetime}}F_{SM}(t) f_{M}(t)dt \approx\frac{1}{\bcancel{T_{lifetime}}}(\lambda_{M}\bcancel{T_{lifetime}}-\frac{1}{2}{\lambda_{M}}^2{T_{lifetime}}^\bcancel{2})\\ -\frac{\lambda_{M}}{\bcancel{T_{lifetime}}\bcancel{(\lambda_{SM}+\lambda_{M})}} \left[\bcancel{(\lambda_{SM}+\lambda_{M})}\bcancel{T_{lifetime}} -\frac{1}{2}(\lambda_{SM}+\lambda_{M})^\bcancel{2}{T_{lifetime}}^\bcancel{2}\right]\\ =(\bcancel{\lambda_{M}}-\bcancel{\frac{1}{2}{\lambda_{M}}^2T_{lifetime}}) -\lambda_{M}\left[\bcancel{1}-\frac{1}{2}(\lambda_{SM}+\bcancel{\lambda_M})T_{lifetime}\right] =\frac{1}{2}\lambda_{M}\lambda_{SM}T_{lifetime}\tag{60.6} $$ 以上から(60.1)の値が求められました。

結果のMとSMに関する対称性から推測可能なように、(60.6)においてMとSMを入れ替えた次の式も同じ値となります。 $$ \frac{1}{T_{lifetime}}\int_0^{T_{lifetime}}F_{M}(t) f_{SM}(t)dt\approx\frac{1}{2}\lambda_{M}\lambda_{SM}T_{lifetime}\tag{60.7} $$ 次に(60.2)式はやや複雑になりますが、基本的には同様な計算を行います。まず、$u:=t\bmod\tau$であることから、$t=i\tau+u, i=0, 1, 2, ..., n-1, T_{lifetime}=n\tau$とおき、$t$を$i$と$u$で表せば、 $$ \frac{1}{T_{lifetime}}\int_0^{T_{lifetime}}F_{SM}(u)f_{M}(t)dt =\frac{1}{T_{lifetime}}\sum_{i=0}^{n-1} \int_0^{\tau} (1-e^{-\lambda_{SM}u})\lambda_{M}e^{-\lambda_{M}(i\tau+u)}du\\ =\frac{\lambda_{M}}{T_{lifetime}}\sum_{i=0}^{n-1}e^{-\lambda_{M}i\tau}\int_0^{\tau}e^{-\lambda_{M}u}du -\frac{\lambda_{M}}{T_{lifetime}}\sum_{i=0}^{n-1}e^{-\lambda_{M}i\tau}\int_0^{\tau}e^{-(\lambda_{SM}+\lambda_M)u}du\tag{60.8} $$ ここで、$\sum_{i=0}^{n-1}e^{-\lambda_{M}i\tau}$を計算すると、等比数列の和及びMaclaurin展開の1次近似より、 $$ \sum_{i=0}^{n-1}e^{-\lambda_{M}i\tau} =\frac{1-e^{-\lambda_{M}T_{lifetime}}}{1-e^{-\lambda_{M}\tau}} \approx\frac{\bcancel{\lambda_{M}}T_{lifetime}}{\bcancel{\lambda_{M}}\tau} =\frac{T_{lifetime}}{\tau} $$ よって、(60.8)の右辺第1項は、 $$ \text{1st term of RHS of (60.8)}=\frac{\bcancel{\lambda_{M}}}{\bcancel{T_{lifetime}}}\frac{\bcancel{T_{lifetime}}}{\tau}\left[\frac{e^{-\lambda_{M}t}}{-\bcancel{\lambda_{M}}}\right]^{\tau}_0 =\frac{1}{\tau}(1-e^{-\lambda_{M}\tau})\tag{60.9} $$ (60.8)の右辺第2項は、 $$ \text{2nd term of RHS of (60.8)}=-\frac{\lambda_{M}}{\bcancel{T_{lifetime}}}\frac{\bcancel{T_{lifetime}}}{\tau}\left[\frac{e^{-(\lambda_{SM}+\lambda_{M})t}}{-(\lambda_{SM}+\lambda_{M})}\right]^{\tau}_0\\ =-\frac{\lambda_{M}}{\tau(\lambda_{SM}+\lambda_{M})}\left[1-e^{-(\lambda_{SM}+\lambda_{M})\tau}\right]\tag{60.10} $$ 同様にMaclaurin展開の2次近似を(60.9)と(60.10)に用いると、(60.8)は、 $$ \frac{1}{T_{lifetime}}\int_0^{T_{lifetime}}F_{SM}(u) f_{M}(t)dt \approx\frac{1}{\bcancel{\tau}}(\lambda_M\bcancel{\tau}-\frac{1}{2}\lambda_M^2\tau^\bcancel{2})\\ -\frac{\lambda_{M}}{\bcancel{\tau(\lambda_{SM}+\lambda_{M}})} \left[\bcancel{(\lambda_{SM}+\lambda_{M})\tau} -\frac{1}{2}(\lambda_{SM}+\lambda_{M})^\bcancel{2}\tau^\bcancel{2}\right]\\ =(\bcancel{\lambda_{M}}-\bcancel{\frac{1}{2}{\lambda_{M}}^2\tau}) -\lambda_{M}\left[\bcancel{1}-\frac{1}{2}(\lambda_{SM}+\bcancel{\lambda_M})\tau\right] =\frac{1}{2}\lambda_{M}\lambda_{SM}\tau\tag{60.11} $$ 以上から(60.2)の値が求められました。

これも結果のMとSMに関する対称性から推測可能なように、(60.11)においてMとSMを入れ替えた次の式も同じ値となります。 $$ \frac{1}{T_{lifetime}}\int_0^{T_{lifetime}}F_{M}(t) f_{SM}(u)dt\approx\frac{1}{2}\lambda_{M}\lambda_{SM}\tau\ \ s.t.\ \ u:=t\bmod\tau\tag{60.12} $$


左矢前のブログ 次のブログ右矢


ページ: