Posts Tagged with "AI"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.
posted by sakurai on September 5, 2023 #657

人間:

間違いです。$F_\text{SM}(\tau_n)$は時刻$\tau_n$での修理によりゼロになります。ところがそれを代入すると、不稼働度は$F_\text{SM}(t)-0=F_\text{SM}(t)$となり、これは$\Pr\{\text{SM receives a fault in }(0,t)\}$となり不合理。本来は$\Pr\{\text{SM receives a fault in }(\tau_n,t)\}$となるはず。この矛盾を解消してください。

ChatGPT: (中略)

申し訳ありません、以前の説明で矛盾の解消に至らなかったことに気づきました。再度考察し、不稼働度を正しく表現しましょう。

検出不可の場合と検出可の場合を組み合わせて不稼働度を考える際、以下の確率を組み合わせる必要があります。

検出不可の場合

  • $ \Pr\{\text{fault not detected at } \tau_n\} = 1 - K $
  • $ \Pr\{\text{SM receives a fault in } (0, t]\} = F_{\text{SM}}(t) $

検出可の場合

  • $ \Pr\{\text{fault detected at } \tau_n\} = K $
  • $ \Pr\{\text{SM receives a fault in } (\tau_n, t]\} $

ここで、検出可の場合において、$ \tau_n $での故障は瞬時に修理されるため、$ F_{\text{SM}}(\tau_n) = 0 $ です。さらに、この時点での不信頼度がリセットされるため、$ \tau_n $から$ t $までの故障生起確率が重要となります。

この確率を表現するために、$ u = t - \tau_n $ と定義されていることを利用し、次のように表現します。

  • $ \Pr\{\text{SM receives a fault in } (\tau_n, t]\} = F_{\text{SM}}(u) $

したがって、不稼働度 $ Q_{\text{SM}}(t) $ は以下のようになります。

$$ Q_{\text{SM}}(t) =\img[-1.35em]{/images/withinseminar.png} $$

この式では、検出不可の場合と検出可の場合を適切に組み合わせ、不稼働度を正しく表現しています。検出可の場合において、$ \tau_n $での故障が瞬時に修理されること、およびその時点での不信頼度がリセットされることを反映しています。


今回は正解を与えずに矛盾を指摘して解消させましたが、うまく正解を導出できました。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

posted by sakurai on September 4, 2023 #656

人間:

$\tau_n$での検出可の確率を$\Pr\{\text{fault detected at }\tau_n\}=K (const.)$ 検出不可の確率を$\Pr\{\text{fault not detected at }\tau_n\}$、 時刻aからbまでにSMにフォールトが起きる確率を$\Pr\{\text{SM receives a fault in }(a, b]\}$ と表記してください。

ChatGPT: (中略)

指定された表記に基づいて、各確率を以下のように定義します。

  • $ \tau_n $での検出可の確率:$ \Pr\{\text{fault detected at } \tau_n\} = K $ (定数)
  • $ \tau_n $での検出不可の確率:$ \Pr\{\text{fault not detected at } \tau_n\} $
  • 時刻$ a $から$ b $までにSMにフォールトが起きる確率:$ \Pr\{\text{SM receives a fault in} (a, b]\} $

これらの確率を用いると、不稼働の条件を以下のように表現できます。

検出不可の場合

$$ \Pr\{\text{fault not detected at } \tau_n\} \cdot \Pr\{\text{SM receives a fault in } (0, t]\} $$

検出可の場合

$$ K \cdot \Pr\{\text{SM receives a fault in } (\tau_n, t]\} $$

上記の式は、検出の可・不可に基づいて、SMが不稼働になる確率を表現しています。

人間:

指数分布するフォールト事象について、以下のことが知られています。 $$\Pr\{\text{fault detected at }\tau_n\}=K (const.)$$ $$\Pr\{\text{SM receives a fault in }(a, b]\}=\int_a^b f_\text{SM}(x)dx = F_\text{SM}(b)-F_\text{SM}(a)$$ ただし、$f_\text{SM}(t)$はPDF, $F_\text{SM}(t)$はCDF tにおける不稼働度$Q_\text{SM}(t)$を、SMの不信頼度$F_\text{SM}(t)$を用いて表現してください。$u:=t-\tau_n$として$\tau$及び$\tau_n$を消去したうえで$t, u$で表現してください。exponential表現は使用しないこと。

ChatGPT:

指定された条件に基づいて、$ t $における不稼働度 $ Q_{\text{SM}}(t) $ を計算し、$ \tau $ 及び $ \tau_n $ を消去して $ t, u $ で表現します。変数 $ u $ は $ u = t - \tau_n $ と定義されています。

まず、前述の不稼働確率をSMの不信頼度 $ F_{\text{SM}}(t) $ として表現するために、以下の式を考えます。

検出不可の場合

$$ \begin{eqnarray} \Pr\{\text{fault not detected at } \tau_n\} \cdot \Pr\{\text{SM receives a fault in } (0, t]\} &=& (1 - K) \cdot (1 - e^{-\lambda t}) \\ &=& (1 - K) \cdot F_{\text{SM}}(t) \end{eqnarray} $$

検出可の場合

$$ \begin{eqnarray} K \cdot \Pr\{\text{SM receives a fault in } (\tau_n, t]\} &=& K \cdot (e^{-\lambda \tau_n} - e^{-\lambda t}) \\ &=& K \cdot (F_{\text{SM}}(\tau_n) - F_{\text{SM}}(t)) \end{eqnarray} $$

これらの式を合計すると、$ t $ における不稼働度 $ Q_{\text{SM}}(t) $ が得られます。

$$ \begin{eqnarray} Q_{\text{SM}}(t) &=& (1 - K) \cdot F_{\text{SM}}(t) + K \cdot (F_{\text{SM}}(\tau_n) - F_{\text{SM}}(t)) \\ &=& (1 - K) \cdot F_{\text{SM}}(t) + K \cdot F_{\text{SM}}(t - u) - K \cdot F_{\text{SM}}(t) \\ &=& F_{\text{SM}}(t) - K \cdot F_{\text{SM}}(t) + K \cdot F_{\text{SM}}(t - u) \end{eqnarray} $$

ここで、exponential表現を使用せず、$ \tau $ 及び $ \tau_n $ を消去して $ t, u $ で表現しました。この式が、指定された条件に基づく不稼働度の表現となります。


計算間違いがあるようです。さらに、単純に積分の式を当てはめても正解が出ません。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (24)

posted by sakurai on August 31, 2023 #654

さらに、過去記事で8通りの事象の分類からの$Q_\text{SM}(t)$導出を実施しましたが、これをChatGPT-4に実行させてみます。

人間:

ISO 26262の範囲では故障率λは一定値をとると考える。従って、フォールトの分布は指数分布となります。

一般にはSM (Safety Mechanism)にフォールトが起きても直ちにVSG(Violation of a safety goal)とならないため、意図機能が動作している間に修理が可能であり、これをリペアラブルエレメントと言います。SMの故障率は$\lambda_\text{SM}$です。

定期検査修理スキームは以下のとおりです。2nd SMによるSMに対する定期検査が、周期$\tau$で行われます。 i番目の検査時刻は$\tau i, i=1,...,n$とするとき、最近の検査時刻を$τ_n$とすれば、$τ_n=nτ=\lfloor\frac{t}{\tau}\rfloor\tau$

定期検査により検出されたフォールトは全て、瞬時に修理されるものとします。ここで検査は確定的に実施されるため、区間$[(i-1)\tau, i\tau)$で生起した検出されるフォールトは全てiτにおいて修理されます。

SMのフォールト生起について、((0から$\tau_n$までの生起の有/無),($\tau_n$での検出の可/不可),($\tau_n$から$t$までの生起の有/無)) の8通りについて考え、$t$において不稼働の事象を洗い出してください。

なお、$\tau_n$での故障検出可とは、故障の有無を問わないものとします。一例として、故障が無いから検出できないとするのではなく、SMのうち検出可部分の故障が無いと読みます。この場合は故障の生起は無し、検出は有りとします。

ChatGPT: (中略)

指定されたシステムについて、フォールトの生起と検出に関連する8つの異なる事象を考えます。以下の条件を考慮して、不稼働の事象を洗い出します。

  1. $ 0 \leq t < \tau_n $: この区間では故障の検出は行われません。
  2. $ \tau_n \leq t < \tau_{n+1} $: この区間では故障が発生しても、次の検査時刻まで検出されません。

以下の8通りの事象を考えます。

  1. $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起なし
  2. $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起あり
  3. $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出可、$ (\tau_n,t) $での故障生起なし
  4. $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出可、$ (\tau_n,t) $での故障生起あり
  5. $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起なし
  6. $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起あり
  7. $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出可、$ (\tau_n,t) $での故障生起なし
  8. $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出可、$ (\tau_n,t) $での故障生起あり

したがって、不稼働の事象は以下の5つとなります。

  • 事象2: $ (0,\tau_n) $での故障が生起しないものの、$ (\tau_n,t) $で故障が生じ、そのまま不稼働となる。
  • 事象4: $ (0,\tau_n) $での故障が生起しないものの、$ (\tau_n,t) $で故障が生じる。この故障は$ \tau_n $で検出可能であったにも関わらず、次の検査まで検出されない。
  • 事象5: $ (0,\tau_n) $での故障が検出されず、$ \tau_n $での検出もなく、そのまま不稼働となる。
  • 事象6: $ (0,\tau_n) $での故障が検出されず、$ (\tau_n,t) $でさらに故障が生じ、不稼働となる。
  • 事象8: $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出可(瞬時に修理される)、$ (\tau_n,t) $での新たな故障生起あり(不稼働へ)

ご指摘いただいた内容を踏まえて、不稼働の事象は上記の5つとなります。再度ご確認いただけますでしょうか。

人間:

正解です。$t$においてSMが不稼働になる条件について、検出の可・不可にで大分類し、検出の可否とフォールトの生起区間の2つの事象の積にそれぞれ分解してください。 これはフォールトの生起と検出の可否が独立であるため可能です。 さらにフォールト生起区間を合成してください。合成とは、例えばフォールト生起区間$[t1, t2)$または$[t2, t3)$の事象を$[t1, t3)$とすることを意味します。

ChatGPT:

指定された条件に基づき、SMが不稼働になる条件を検出の可・不可によって大分類し、それぞれの事象を分解します。その後、フォールト生起区間を合成します。

検出不可の場合

検出不可の場合の不稼働事象は以下の3つでした。

  • 事象2: $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起あり
  • 事象5: $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起なし
  • 事象6: $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出不可、$ (\tau_n,t) $での故障生起あり
フォールト生起区間の合成
  • $ (0,\tau_n) $または$ (\tau_n,t) $の区間での故障生起

検出可の場合

検出可の場合の不稼働事象は以下の2つでした。

  • 事象4: $ (0,\tau_n) $での故障生起なし、$ \tau_n $での検出可、$ (\tau_n,t) $での故障生起あり
  • 事象8: $ (0,\tau_n) $での故障生起あり、$ \tau_n $での検出可(瞬時に修理)、$ (\tau_n,t) $での新たな故障生起あり
フォールト生起区間の合成
  • $ (\tau_n,t) $の区間での故障生起

結論

  • 検出不可の場合:フォールト生起区間が$ (0,\tau_n) $または$ (\tau_n,t) $であれば、SMが不稼働になる可能性がある。
  • 検出可の場合:フォールト生起区間が$ (\tau_n,t) $であれば、SMが不稼働になる可能性がある。

以上が、指定された条件に基づく不稼働の事象の分析です。

人間:

結論の時間区間を簡略化してください。

ChatGPT:

もちろんです。結論の時間区間を簡略化すると、以下のようになります。

  • 検出不可の場合:フォールト生起区間が $ (0,t) $ であれば、SMが不稼働になる可能性がある。
  • 検出可の場合:フォールト生起区間が $ (\tau_n,t) $ であれば、SMが不稼働になる可能性がある。

検出不可の場合では、検出が行われないため、全体の時間区間 $ (0,t) $ での故障生起が不稼働の条件となります。検出可の場合は、検出されれば修理されるため、$ \tau_n $ 以降の新たな故障生起が不稼働の条件となります。


うまく誘導した結果、正解の条件を導出しました。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (23)

posted by sakurai on August 30, 2023 #653

人間:

$t, u$で表現してください。

ChatGPT:

指摘いただき、ありがとうございます。以下に修正した数式を示します。

検出可能な故障と検出不可能な故障の合計不稼働度 $ Q_\text{SM}(t) $ は、$ u = t - \tau_n $ として以下のように表されます。

$$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(u) K + F_\text{SM}(t) (1 - K) $$

ここで、$ F_\text{SM}(u) $ は最後の検査以降の時間 $ u $ における不信頼度、$ F_\text{SM}(t) $ は全体の不信頼度を示します。また、$ K $ はフォールトの検出率を表しています。

定数を前置して、非検出の場合の項を前にしてください。

ご指摘いただき、ありがとうございます。指定通り、不稼働度 $ Q_\text{SM}(t) $ を再定義します。ここで、 $ u = t - \tau_n $ と置いています。

$$ Q_\text{SM}(t) = \img[-1.35em]{/images/withinseminar.png} $$

上記の式では、$ (1 - K) F_\text{SM}(t) $ 項が検出不可能な故障(検出されずに残る故障)を示し、$ K F_\text{SM}(u) $ 項が検出可能な故障(検出されて修理される故障)を示します。また、$ K $ はフォールトの検出率を表しています。


単純な計算ミス等が発生して少々もたつきましたが、正解を導き出しました。特に説明を求めていないにも関わらず、式の説明までしてくれるところが興味深いです。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (22)

posted by sakurai on August 29, 2023 #652

人間:

検出不可能な故障の説明が誤りです。いかなる検出周期でも検出できないのだから、$t$までに一度も修理がおきず、$t$における不稼働度は不信頼度に等しいわけです。

ChatGPT:

申し訳ありません、再度の間違いを訂正します。

検出不可能な故障:これはいかなる検査周期でも検出されない故障です。したがって、故障が発生した瞬間から、時刻 $ t $ まで一度も修理が行われず、その結果、不稼働度 $ Q_\text{SM}^{(2)}(t) $ はそのまま故障発生時から時刻 $ t $ までの不信頼度 $ F_\text{SM}(t) $ に等しくなります。

$$ Q_\text{SM}^{(2)}(t) = F_\text{SM}(t) $$

これを以前に計算した検出可能な故障についての不稼働度と合わせると、全体の不稼働度 $ Q_\text{SM}(t) $ は以下のようになります。

$$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t - \tau_n) K + F_\text{SM}(t) $$

これで、定期検査と修理を行うシステムにおける、時刻 $ t $ における不稼働度を表現したことになります。

$K$を見落としているようです。

おっしゃるとおり、私の最後の数式には$ K $が抜けていました。お詫び申し上げます。その修正は次のようになります。

検出可能な故障と検出不可能な故障の合計不稼働度 $ Q_\text{SM}(t) $ は以下のように表すことができます。

$$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t - \tau_n) K + F_\text{SM}(t) (1 - K) $$

この式で、$ K $はフォールト検出率を表しています。


かなり修正されて良くなってきました。あと一息です。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (21)

posted by sakurai on August 28, 2023 #651

人間:

検出不可能な故障についての説明が誤りです。任意の時点でフォールトが起きたら時刻$t$まで検出不可能なので、そのように修正してください。

ChatGPT:

申し訳ありません、検出不可能な故障についての説明が不正確でした。以下に訂正した説明を提供します。

  1. 検出可能な故障:
    これは最後の検査時間$ \tau_n $以降に起きたフォールトで、次の検査までに検出されると考えられます。したがって、$ t $における不稼働度$ Q_\text{SM}^{(1)}(t) $は、最後の検査以降に発生したフォールトの不信頼度$ F_\text{SM}(t - \tau_n) $と、フォールトが検出される確率$ K $の積として表されます。 $$ Q_\text{SM}^{(1)}(t) = F_\text{SM}(t - \tau_n) K $$

  2. 検出不可能な故障:
    これは最後の検査時間$ \tau_n $より前に起き、次の検査までに検出されないと考えられるフォールトです。したがって、$ t $における不稼働度$ Q_\text{SM}^{(2)}(t) $は、最後の検査以前に発生したフォールトの不信頼度$ F_\text{SM}(\tau_n) $と、フォールトが検出されない確率$ 1 - K $の積として表されます。 $$ Q_\text{SM}^{(2)}(t) = F_\text{SM}(\tau_n) (1 - K) $$ ここで、$ \tau_n = \lfloor \frac{t}{\tau} \rfloor \tau $であり、$ u = t - \tau_n $としました。以上の2つの不稼働度を合計すると、全体の不稼働度$ Q_\text{SM}(t) $を得ます。 $$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t - \tau_n) K + F_\text{SM}(\tau_n) (1 - K) $$


検出可能な場合の説明は合っています。ところが検出不可能な場合の説明が、最後の検査を問題にしている点で誤っています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (20)

posted by sakurai on August 25, 2023 #649

人間:

説明が矛盾しています。両方のケースで$1-K$を用いています。また、検出不可能なケースで$t-\tau_n$と誤って用いています。さらに検出可能なケースで$F_\text{SM}(t)$としています。

ChatGPT:

おっしゃる通り、私の説明は間違いが含まれております。ここでの重要な点は、検出可能な故障と検出不可能な故障について別々に考える必要があるということです。

検出可能な故障について考えると、これは最後の検査$ \tau_n $以降に発生し、次の検査時間までに検出されると考えられます。したがって、不稼働度$ Q_\text{SM}^{(1)}(t) $は、最後の検査以降に発生したフォールトの不信頼度$ F_\text{SM}(t - \tau_n) $とフォールトが検出される確率$ K $の積として表されます。

$$ Q_\text{SM}^{(1)}(t) = F_\text{SM}(t - \tau_n) K $$

一方、検出不可能な故障について考えると、これは最後の検査$ \tau_n $以前に発生し、次の検査時間までに検出されないと考えられます。したがって、不稼働度$ Q_\text{SM}^{(2)}(t) $は、最後の検査以前に発生したフォールトの不信頼度$ F_\text{SM}(u) $とフォールトが検出されない確率$ 1 - K $の積として表されます。

$$ Q_\text{SM}^{(2)}(t) = F_\text{SM}(u) (1 - K) $$

ここで、$ u = t - \tau_n $と置いています。これらを合計すると、全体の不稼働度$ Q_\text{SM}(t) $を得ることができます。

$$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t - \tau_n) K + F_\text{SM}(u) (1 - K) $$


検出可能の場合の説明は合っています。ところが、検出不可能の場合の説明が誤っています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (19)

posted by sakurai on August 24, 2023 #648

前回は、稼働度の一般方程式 $$ A(t) = R(t) + \int_{0}^{t} m(x) \cdot R(t - x) dx $$ を定期修理の場合に特殊化することにより、数式変形を用いて不稼働度$Q(t)$を導出させましたが、今回は過去記事のように、不稼働度をフォールトの検出・非検出に分けて考えさせ、$Q(t)$を導出させます。

例によってChatGPTは毎回回答が変わるので、よりましな回答をした場合について記載します。まず、以下にChatGPTに対する質問を記載します。


人間:

ISO 26262の範囲では故障率$\lambda$は一定値をとるため、フォールトの分布は指数分布となります。

一般にはSM (Safety Mechanism)にフォールトが起きても直ちにVSG(Violation of a safety goal)とならないため、意図機能が動作している間に修理が可能であり、これをリペアラブルエレメントと言います。SMの故障率は$\lambda_\text{SM}$です。

定期検査修理スキームは以下のとおりです。2nd SMによるSMに対する定期検査が、周期$\tau$で行われます。 $i$番目の検査時刻は$i\tau,\ \ i=1,...,n$とするとき、最近の検査時刻を$\tau_n$とすれば、$\tau_n=n\tau=\lfloor\frac{t}{\tau}\rfloor \tau$と表されます。定期検査により検出された(フォールト検出率を$K$, 一定値)フォールトは全て、瞬時に修理されるものとします。

SMのフォールトについて、(1)検出可能、(2)検出不可能の2つに分けて考え、それぞれの、tにおける不稼働度$Q_\text{SM}(t)$を、SMの不信頼度$F_\text{SM}(t)$を用いて表現してください。$u\equiv t-\tau_n$として$\tau$及び$\tau_n$を消去したうえで$t, u$で表現してください。exponential表現は使用しないこと。

ChatGPT:

まず、故障が$ t $で発生し、それが検出可能かどうかを分けて考えてみましょう。

  1. 検出可能なフォールト:
    これは、最後の検査$ \tau_n $以降に発生したものです。$ t $における不稼働度は、発生してから次の検査までの間故障が検出されない確率を考えればよく、これは、$ K $の補数である$ 1-K $を用いて表すことができます。したがって、$ t $における不稼働度$ Q_\text{SM}^{(1)}(t) $は次のようになります。 $$ Q_\text{SM}^{(1)}(t) = F_\text{SM}(t) (1 - K) $$

  2. 検出不可能なフォールト:
    これは、最後の検査$ \tau_n $より前に発生したものです。$ t $における不稼働度は、発生してから最後の検査までの間故障が検出されない確率を考えればよく、これは、$ K $の補数である$ 1-K $を用いて表すことができます。したがって、$ t $における不稼働度$ Q_\text{SM}^{(2)}(t) $は次のようになります。 $$ Q_\text{SM}^{(2)}(t) = F_\text{SM}(t- \tau_n) (1 - K) $$ ここで、$ u = t - \tau_n $とすると、以上の2つの不稼働度をまとめて表現することができます。 $$ Q_\text{SM}(t) = Q_\text{SM}^{(1)}(t) + Q_\text{SM}^{(2)}(t) = F_\text{SM}(t) (1 - K) + F_\text{SM}(u) (1 - K) $$ これが、定期検査と修理を行うシステムにおける、$ t $における不稼働度を表現したものとなります。


考え方の方向は良いのですが、細部でいろいろ問題がありそうです。まず検出可・不可について両者ともに$1-K$を誤って用いています。さらに、検出可の場合は最後に検出された後からのフォールトのみを考えれば良いのですが、その点について検出不可の場合と混乱しているようです。


左矢前のブログ 次のブログ右矢

$\frac{1}{t}Q(t)$のグラフ

posted by sakurai on August 23, 2023 #647

人間:

$M_\text{PMHF}$の定義は以下です。

$$M_\text{PMHF}\equiv\frac{1}{T_\text{lifetime}}Q(T_\text{lifetime})$$

これを時刻$t$に対して書き、車両寿命間でどうなるかを見てみます。

時間は$t$=1e4まで、$\tau$=1000, $\lambda$=0.001、$K_\text{MPF}$=0.8のとき、$\frac{1}{t}Q(t)$のグラフを赤で描いてください。

ChatGPT:

# Update the parameters
tau = 1000
K_MPF = 0.8

# Redefine t_values to range from 0 to 1e4
t_values = np.linspace(0, 1e4, 1000)

# Calculate Q(t) for different values of t, choosing the appropriate value of i for each t
Q_values = [Q(t, int(t/tau)) if t != 0 else 0 for t in t_values]

# Calculate 1/t * Q(t) for different values of t
Q_t_values = [Q_val/t if t != 0 else 0 for t, Q_val in zip(t_values, Q_values)]

# Plot the function 1/t * Q(t)
plt.figure(figsize=(10, 6))
plt.plot(t_values, Q_t_values, label="1/t * Q(t)", color="red")
plt.xlabel("Time (t)")
plt.ylabel("1/t * Q(t)")
plt.title("Graph of 1/t * Q(t) with τ = 1000, λ = 0.001 and K_MPF = 0.8")
plt.grid(True)
plt.legend()
plt.show()

図%%.1
図647.1 $\frac{1}{t}Q(t)$のグラフ

$M_\text{PMHF}$は本来はサブシステムに関するメトリクスですが、ここではあえてリペアラブルエレメント単体に関して不稼働度の時間平均のグラフを書かせてみました。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (18)

posted by sakurai on August 22, 2023 #646

人間:

$t$は1万時間、$\tau$は1000時間、$\lambda$は0.0001としたとき、$K_\text{MPF}$=0.2, 0.4, 0.6, 0.8の4本のグラフを一枚に表してください。また、色のバリエーションをつけてください。ただし明度が高いと見づらいので低くしてください。

ChatGPT:

import numpy as np
import matplotlib.pyplot as plt
import math

# Parameters
lambda_ = 0.0001
tau = 1000
K_MPF_values = [0.2, 0.4, 0.6, 0.8]

# Functions
def F(t, lambda_):
    return 1 - np.exp(-lambda_ * t)

def Q(t, lambda_, tau, K_MPF):
    n = np.floor(t / tau)
    u = t - n * tau
    return (1 - K_MPF) * F(t, lambda_) + K_MPF * F(u, lambda_)

# Time range
t_max = 1e4
t = np.linspace(0, t_max, 500)

# Plot with color variation
plt.figure(figsize=(10, 6))

colors = ['blue', 'green', 'purple', 'red']

for K_MPF, color in zip(K_MPF_values, colors):
    # Compute Q(t)
    Q_t = Q(t, lambda_, tau, K_MPF)
    plt.plot(t, Q_t, label=f'K_MPF = {K_MPF}', color=color)

plt.xlabel('Time (t)', fontsize=14)
plt.ylabel('Q(t)', fontsize=14)
plt.title('Graph of Q(t) for various K_MPF', fontsize=16)
plt.legend()
plt.grid(True)
plt.show()

図%%.1
図646.1 $Q(t)$のいろいろなグラフ

上記のグラフは、パラメータ $ \lambda = 0.0001, \tau = 1000 $ と時間範囲 $ t = 0 $ から $ t = 1 \times 10^{4} $ における $ K_{\text{MPF}} = 0.2, 0.4, 0.6, 0.8 $ の各ケースでの $ Q(t) $ の挙動を色分けして示しています。

各 $ K_{\text{MPF}} $ の値に対応するラインは、指定した色(青、緑、紫、赤)で描画されています。これにより、各 $ K_{\text{MPF}} $ の値の影響を一目で理解することが容易になります。

修理の効果 $ K_{\text{MPF}} $ を大きくすると、全体的な信頼度が向上することが確認できます。また、検査周期 $ \tau = 1000 $ 時間毎の信頼度の改善(リセット)の影響も $ K_{\text{MPF}} $ が大きいほど顕著になります。

なお、上記のグラフは特定のパラメータ設定に基づいていますので、異なるパラメータ値や時間範囲でグラフを描くことも可能です。必要であれば、お知らせください。


このようにChatGPTはグラフを描くだけでなく、$K_\text{MPF}$を振った時の挙動まで(頼んでいないのに)分析してくれます。ChatGPTのアルゴリズムは、次にくる確率が高い言葉が選択されるのだそうですが、単にそれだけでプログラミングができたり、ここまでできるものでしょうか?


左矢前のブログ 次のブログ右矢


ページ: