Posts Tagged with "PMHF"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

PMHF式の導出(2)

posted by sakurai on July 28, 2016 #16

故障検出周期

検出時点での故障率を、以下のように安全機構により検出できる部分とできない部分に分解します。またそれぞれの場合の条件を以下に示します。

  1. 安全機構が周期$\tau_{SM}$で故障検出された際に検出できない故障率の部分は、なんど検出しても検出されないため、車両寿命の間中レイテントとなる。
  2. 安全機構が周期$\tau$で故障検出した際に検出できる故障率の部分は、$t=0$~$\tau_{SM}$まではレイテントとなる。その後$t=\tau_{SM}$においてゼロ時間で修理される。

次に車両寿命におけるそれぞれの頻度を考えると、

  1. $t=0$〜$T_{lifetime}$までの一回
  2. $\frac{T_{lifetime}}{\tau_{SM}}$回

従って、(15.1)は正確には、上記の2つの事象確率と頻度の積を加えあわせ、 \[ M_{PMHF,DPF,A\rightarrow B}=\frac{1}{T_{lifetime}}F_{DPF,A\rightarrow B}(T_{lifetime}) =\frac{1}{T_{lifetime}}[F_{DPF,l,A\rightarrow B}(T_{lifetime})+\frac{T_{lifetime}}{\tau_{SM}}F_{DPF,d,A\rightarrow B}(\tau_{SM})] \]\[ \approx\frac{1}{2}\lambda_B(\lambda_{A,DPF,l}T_{lifetime}+\lambda_{A,DPF,d}\tau_{SM})\tag{16.1} \]

となります。

(16.1)は、「レイテント状態のエレメントAの不信頼度」に「Bの故障率」をかけたものです。前者をグラフ化したものが図16.1です。$DC=0$、つまり定期的な故障検出によりエレメントの故障が検出されない場合は、(14.1)のとおりです。一方、エレメントの故障が検出される部分がある場合には、検出時点で修理されるため、その分の不信頼度はゼロとなり、故障が検出されない部分のみが累積していきます。

図16.1
図16.1 エレメントの不信頼度のグラフ

青のグラフがDC=0の場合、オレンジがDC=20%の場合、グレーがDC=40%の場合、黄色がDC=60%の場合、濃青がDC=80%の場合、緑がDC=100%の場合をそれぞれ表します。


左矢前のブログ 次のブログ右矢

PMHF式の導出(1)

posted by sakurai on July 17, 2016 #15

DPFの場合のPMHFの導出

エレメントAが先に故障し、引き続いてエレメントBが故障する場合のDPFのPMHFは「エレメントAが故障してレイテント状態になっている場合にエレメントBが故障する、車両寿命間のDPF確率の時間平均」であり、DPF(2)で求めたように、(14.6)を用いて $$ M_{PMHF,A\rightarrow B}==\frac{1}{T_{lifetime}}F_{A\rightarrow B}(T_{lifetime})\approx\frac{1}{2}\lambda_{A,DPF,l}\lambda_B T_{lifetime}\tag{15.1} $$ と求められます。

故障がレイテントとなる場合

ところが(15.1)はまだ場合分けが不足しています。先にエレメントAに起きた故障がレイテントになる場合は、一般的には時刻$t=\tau$において、安全機構の検出漏れとなる場合ですが、さらに安全機構の検出が間に合わない場合、言い換えれば検出までにエレメントAに故障が起きる場合も加える必要があります。なぜなら、安全機構は検出周期$\tau$で検出しますが、$\tau$までにエレメントAに発生した故障は$\tau$までは検出されないため、その間はレイテントとなる可能性が若干でも存在するからです。

この点について次稿で掘り下げて行きたいと思います。


左矢前のブログ 次のブログ右矢

DPF(2)

posted by sakurai on July 9, 2016 #14

DPFの定義

ISO26262でいうDPFは、前述のように、まずエレメントAの故障がおき、かつレイテント状態(故障分類(1)で解説)になっていて、それに関連するエレメントBの故障が引き続いて起きた場合が対象となります。ここで関連するとは、エレメントAが主機能の場合はエレメントBは安全機構、エレメントAが安全機構の場合はエレメントBは主機能という意味です。主機能とそれとは別の主機能の故障はDPFとは考えず、一点故障が別々の主機能に2回起きたと考えます。

さて、DPFの確率計算を行う場合、単純に主機能故障の起きる確率$PoF_{M,T_{lifetime}}=\Pr\{X_M\lt T_{lifetime}\}$と安全機構の故障の起きる確率$PoF_{SM,T_{lifetime}}=\Pr\{X_{SM}\lt T_{lifetime}\}$の乗算とはなりません。一般に安全機構が故障するとレイテントになる可能性が大であり、主機能は冗長構成を取らない限り、故障してレイテントになることはありません。従って、主機能故障がレイテントになる確率と安全機構がレイテントになる確率は異なるため、主機能と安全機構のどちらが先に故障したかで場合を分けて計算を行います。

A⇒BのDPFの確率計算

エレメントAが故障してレイテント状態になっている場合にエレメントBが故障する確率の導出を行います。まず、時刻$t$において、エレメントAが故障してレイテントとなっている場合の確率は、時刻$t$におけるエレメントAの不信頼度に他ならないため、(14.1)となります。 \[ \Pr\{\text{A is a latent state at }t\}=\Pr\{X_A\leq t\}=F_A(t)\tag{14.1} \]

次に、時刻$t$までエレメントBは故障しておらず、時刻$t+\Delta t$までの微小区間$(t, t+\Delta t]$にBが故障する微小確率$\Pr\{\text{B receives a fault in}(t, t+\Delta t]\}$は、(14.2)となります。 \[ \Pr\{\text{B receives a fault in}(t, t+\Delta t]\}=\Pr\{t\lt X_B\leq t+\Delta t\}=F_B(t+\Delta t)-F_B(t)\\ =f_B(t)\Delta t=\lambda_B R_B(t)\Delta t\tag{14.2} \]

従って、$(t, t+\Delta t]$の微小DPF確率は両者の積となるため、(14.3)となります。

式49(14.3)

$\Delta t\rightarrow 0$とした極限を$dt$で表し、0から$t$まで積分すると、時刻$t$までのDPF確率が(14.4)として求められます。

式77(14.4)

ここでexponential関数のマクローリン展開は(14.5)です。 \[ e^x=1+x+\frac{x^2}{2}+\cdots\tag{14.5} \]

(14.5)の2次の項までとり(14.3)に代入すれば、(14.6)のようにA⇒BのDPFの確率の近似式が求められます。

A⇒BのDPFの確率の式:

式79(14.6)

左矢前のブログ 次のブログ右矢

DPF(1)

posted by sakurai on June 24, 2016 #13

信頼度と故障率の関係式

DPF(Dual Point Failure; 2点故障)を説明する前に、時刻$t$から時刻$t+\Delta t$までの時間にエレメント$A$に関して起こる故障について、図13.1に示します。

fig13.1
図13.1 エレメントAに関して起こる故障

時刻$t$において、故障していない確率が$R_A(t)$であり、時刻$t+\Delta t$までの$\Delta t$時間における信頼度$R_A(t)$の減少分は、(2.6)から$\lambda_A R_A(t) \Delta t=f_A(t)\Delta t$となることから、

\[ R_A(t+\Delta t)=R_A(t)-\lambda_A R_A(t) \Delta t\tag{13.1} \]

DPFを考えるためにエレメント$A$とエレメント$B$の故障を考えます。エレメント$A$,$B$の故障は独立して起こるので、以下のようになります。

fig13.2
図13.2 エレメントA及びBに関して起こる故障

DPF

さて、次にエレメント$A$,$B$が有り、$A$が主機能の場合は$B$はそれに関する安全機構、$A$が安全機構の場合は$B$はそれに関する主機能であるとします。DPFの定義は

主機能または安全機構が故障してレイテント状態であるときに、それに関する安全機構または主機能の故障が起きること

であるため、「エレメントAが故障してレイテント状態であるときに、エレメントBの故障が起きること」を$A\Rightarrow B$で表し、「エレメントBが故障してレイテント状態であるときに、エレメントAの故障が起きること」を$B\Rightarrow A$で表すとき、以下の図13.3のように、どちらが先に故障するかによって、$A\Rightarrow B$または$B\Rightarrow A$の2つの場合となります。また、それらは排他であるため確率は和で表されます。

fig13.3
図13.3 片方がレイテント状態であるときに、他方の故障


左矢前のブログ 次のブログ右矢

故障分類(2)

posted by sakurai on June 9, 2016 #12

SPF/RF

SPF(Single Point Failure; 一点故障)、RF(Residual Failure; 残余故障) はほぼ同義で、単一の故障により安全目標侵害する可能性のある故障です。前稿の故障分類チャートに拠ればSPFは安全機構が存在しない故障であり、また、RFは安全機構が存在するが診断カバレージ(DC)から漏れる部分の故障です。これをPart10 8.1.8「フォールトの分類及びフォールトクラス寄与度計算のフローチャート」でのDCの定義$K_{FMC,RF}$を用いれば、 \[ \lambda_{RF}=(1-K_{FMC,RF})\lambda_{M,PVSG}\tag{12.1} \]

となります。後で説明するように、SPF/RFを単純化記法でSPFまたはRFと記述することがあるのでご注意ください。(12.1)の場合はRFと表記していますが、SPF/RFの意味です。いうまでもなくRFの式(12.1)において、カバレージ$K_{FMC,RF}=0$の時はSMが存在しないのと同義であり、SPFを意味します。

さて、SPFに対するPMHFは(10.2)、(10.3)、及び(12.1)を用いれば、 $$ M_{PMHF,SPF}=\frac{1}{T_{lifetime}}F_{SPF}(T_{lifetime})\approx\lambda_{RF}\\ =(1-K_{FMC,RF})\lambda_{M,PVSG},~~\mbox{s.t.}~~\lambda_{RF}T_{lifetime}\ll 1\tag{12.2} $$

と求められます。

ここで、一般的に用語SPFの使用法には狭義(SPFとRFを分ける)と広義(RFを含む)の2種が有り、(12.2)左辺では広義の単一故障の意味で用いています(図12/1上段)。一方、SPF/RFという記法もあり、このほうが紛れがありませんが長くなるためあまり用いられません(図12.1中段)。また(12.2)右辺のように、単一故障をRFと表記する場合もあり、これは単一故障のほとんどがRFであるためです(図12.1下段)。式を読む場合には、字面にとらわれることなく、紛らわしい用語の使用法については意味を考えて読む必要があります。

式a91
図12.1 SPF及びRFの使い分け

左矢前のブログ 次のブログ右矢

PMHFの意味

posted by sakurai on May 25, 2016 #10

PMHFの定義式

式(10.1)はISO 26262 Part10に掲載されている、「安全機構に引き続いて主機能が故障する」(※)場合のPMHF式です。

\[ M_{PMHF} = \lambda_{RF} + \frac 1 2 \lambda_{M,MPF}(\lambda_{SM,MPF,l}T_{lifetime}+ \lambda_{SM,MPF,d}\tau) \tag{10.1} \]

結論だけあって説明がほとんどありません。そのためこのブログで式の導出について説明していきたいと思います。

※ところで、FSマイクロ株式会社では、(10.1)が「安全機構が故障して次に主機能が故障する場合」というのは誤りではないかと考えます。(10.1)式の第1項の$\lambda_{RF}$は主機能が故障して安全機構が安全目標侵害を防止した残余(RF=Residual Fault)の故障率なので、安全機構は動作していなければならないはずです。

PMHFとは、ランダムハードウェア故障のメトリック(数値目標)で、正確に表現すれば「アイテムの車両寿命における不稼働率($\approx$故障確率)の時間平均」となります。単なる故障確率ではなく、修理も含めた不稼働確率です。以下はISO26262規格には書かれていませんが、PMHFの定義式です。

PMHFの定義式: $$ M_{PMHF} :=\frac{1}{T_{lifetime}} \Pr\{\text{item is down at } T_{lifetime}\} \tag{10.2} $$

時刻$t$におけるitemの不稼働率(Point Unavailability; PUA)である$Q_{item}(t)$を考えます。 $Q_{item}(t)$は以下の式で定義されるように、ある時刻$t$においてアイテムが稼働していない確率です。

$$ Q_{item}(t):=\Pr\{\text{item is down at } t\} \tag{10.3} $$ 従って、(10.3)を(10.2)に用いれば、PMHFは $$ M_{PMHF} :=\frac{1}{T_{lifetime}}Q_{item}(T_{lifetime}) \tag{10.4} $$ のように表されます。

一方、稼働率(Point Availability)$A_{item}(t)$は、(10.5)に示すように、1からPUAである$Q_{item}(t)$を引いたものです。 $$ A_{item}(t):=1-Q_{item}(t)\tag{10.5} $$ 稼働率はまた、修理が可能なitemにおいて、

  • $t$までに一度も故障が起きない確率と、
  • $t$までに故障が起きて修理された後、$t$までに故障が起きない確率

に分けられます。数式で書けば、 $$ A_{item}(t)=\Pr\{\text{item is up at } t\} \\ =\Pr\lbrace{\text{item not failed in }(0, t]\rbrace} + \displaystyle \sum_{i=1}^{n} \Pr\lbrace{\text{item is repaired at }\tau_i \cap \text{item is up in }(\tau_i, t]\rbrace} \tag{10.6} $$ となります。(10.6)式の意味は、Point Availabilityは、Reliability(1度も故障しない確率)に加えて、各検査インターバルで故障検出を行い、検出された分については全て修理し、それが現在まで故障しない確率との和ということです。

そのことはQuality and Reliability of Technical Systemsの166ページに示されています。

図%%.1
図10.1 Point Availability

同著者の同内容が確認できます。

PMHFの意味

ここで、2重故障(DPF)の確率はかなり低いため、PMHFの定義式(10.4)において(10.6)のうち、第2項である修理される部分を無視すれば、$X_{item}$を無故障運転時間を表す確率変数(random variable)としたとき、 $$ M_{PMHF}\approx\frac{1}{T_{lifetime}}\Pr\{\text{item is failed in }(0, T_{lifetime}]\}\\ =\frac{1}{T_{lifetime}}\Pr\{X_{item}\lt T_{lifetime}\}=\frac{1}{T_{lifetime}}F_{item}(T_{lifetime})\tag{10.7} $$ (10.7)に対して、不信頼度$F(t)$の近似式である(7.2)を用いて $$ F_{item}(t)=1-e^{-\lambda_{item}t}\approx \lambda_{item}t, ~~\mbox{s.t.}~~ \lambda_{item}t \ll 1 \tag{10.8} $$ を適用すれば、次の(10.9)が得られます。 $$ M_{PMHF}\approx\lambda_{item},~~\mbox{s.t.}~~\lambda_{item}T_{lifetime}\ll 1\tag{10.9} $$ これにより、PMHFは$\lambda_{item}T_{lifetime} \ll 1$の場合に「アイテムの車両寿命間の平均的な故障率」とみなすことができます。

先に無視した修理を含めれば、(10.4)のように「アイテムの車両寿命間の平均的な不稼働率」と一般化されます。

※このブログは2016年に書かれたものであり、新しい研究結果を以下に連載していますので、参考にしてください
http://fs-micro.com/blogSummary/#/blogSummary/tab/PMHF+derivation.html


左矢前のブログ 次のブログ右矢


ページ: