Article #99

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

Kパラメータは条件付き確率か(2)

posted by sakurai on May 10, 2019 #99

(99.1)の定義を用いれば、時刻$t$から$t+dt$において発生するIFのフォールトについて、VSG抑止される確率を求めると、条件付き確率のチェインルールを用いれば、 $$ \Pr\{\mathrm{IF\ prevented}\cap\mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ =\Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ \cdot\Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}\cdot\Pr\{\mathrm{IF\ not\ failed\ before\ }t\}\tag{99.1} $$ ここで、それぞれ $$ \Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}=K_{\mathrm{IF,FMC,RF}},\\ \Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}=\lambda_{\mathrm{IF}}dt,\\ \Pr\{\mathrm{IF\ not\ failed\ before\ }t\}=R_{\mathrm{IF}}(t) \tag{99.2} $$ であるから、 $$ (99.1)=K_{\mathrm{IF,FMC,RF}}\lambda_{\mathrm{IF}}R_{\mathrm{IF}}(t)dt\tag{99.3} $$ と、IFに関する故障率や信頼度関数で表すことができます。

しかしながら、Kパラメータ($K_{\mathrm{FMC,MPF}}$及び$K_{\mathrm{FMC,RF}}$)が定数だと矛盾が起きます。抑止条件が確率的に作用することにより、例えば1回目にはVSG抑止されたフォールトが、2回目にはVSG抑止されないことが起こりえます。あるいは1回目にはリペアされたフォールトが2回目にはリペアされないことが起こりえます。検出が確率的になされるからとはいえ、同じ故障が検出されたりされなかったりするのは、合理性がありません。

次に、例えば故障検出率$K_{\mathrm{FMC,MPF}}$について考えると、長時間が経ち、故障検出を長く続けると、検出されるフォールトは全量リペアされるのに比べて、検出されないフォールト確率(不信頼度)は上昇し続けます。従って、フォールト中の検出される部分の比率が高まりそうであるのに、これが一定であるとは感覚に反します。

フォールト検出のたびにサイコロで検出を決めているならそのようになりますが、一般的には診断カバレージ(Diagnostic Coverage; DC)はSMのアーキテクチャにより決定され、確率的には検出されないとここでは考えることにします。そうすれば、上記の問題点は解消されます。


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax. If you include an ad such as http://, it will be invalidated by our AI system.

Please enter the numbers as they are shown in the image above.