21 |
不稼働度$Q(t)$について (2) |
1. エレガントな導出法
図347.1を以下に再掲します。
図347.1において、SMが$t$においてダウンしている確率を考えます。SMに起こったフォールトが、任意の$\tau_i$で2nd SMにより検出可能(=修理可能)か不可能かで分類します。
- 検出可能な場合:時刻$0$から$\tau_n$未満の間にフォールトが起きる場合、次の定期検査$\tau_i\ (i=1,...,n)$の時点で検出され修理されるので、最近の検査時刻$\tau_n$でフォールトはありません。あるいは、フォールトが起きない場合も$\tau_n$の時点ではフォールトはありません。従って、時刻$t$でダウンしている確率は$\tau_n$直後から$t$までの間にフォールトが起きる場合に限られます。
- 検出不可能な場合:2nd SMが無いのと同じことであるため、全ての時間、つまり時刻$0$から$t$までの間にフォールトが起きる確率、すなわち不信頼度$F(t)$が、時刻$t$でダウンしている確率となります。
以上を合わせ、SMが時刻$t$でダウンしている確率を求めます。
- 検出の可不可のそれぞれの場合は排反事象である(ためそれぞれの確率は足すことができる)
- フォールトの生起と検出可不可はそれぞれ独立事象である(ため積事象の場合それぞれの確率は掛けることができる)
上記から不稼働度は、
$$ Q_\text{SM}(t)\equiv\Pr\{\text{SM is down at }t\}\\ =\Pr\{\text{fault not detected at }\tau_n\ \cap \text{SM recieves a fault in }(0, t]\ \cup\\ \text{fault detected at }\tau_n\ \cap\ \text{SM recieves a fault in }(\tau_n, t]\}\\ =\Pr\{\text{fault not detected at }\tau_n\}\Pr\{\text{SM recieves a fault in }(0, t]\}\\ +\Pr\{\text{fault detected at }\tau_n\}\Pr\{\text{SM recieves a fault in }(\tau_n, t]\}\\ =\img[-1.35em]{/images/withinseminar.png} \tag{348.1} $$ と導出されます。
なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。
Leave a Comment