Posts Issued on September 21, 2016

PMHF値の計算

posted by sakurai on September 21, 2016 #19

PMHFの加算

部品個別のPMHF式は前回導出したものとなりますが、これをアイテムとして積算(総和)する必要があります。その方法には一般に、FMEDAによるもの、FTAによるものの2種類があります。単純な直列アイテムであれば、確率計算的には和を取るだけなので(ただし$\lambda t\ll 1$のとき)FMEDAとFTAは同じ値になります。一方、冗長構成等の並列アイテムの場合は、FTAでないと正しい値は求まりません。アイテムの故障率(2)でご紹介したように、並列アイテムの場合、アイテム不信頼度は部品不信頼度の積となるためです。FTAを用いると、ANDゲートで並列アイテム、ORゲートで直列アイテムを表すことができ、値の計算を正確に行うことができます。

ANDゲートでは確率の乗算で、事象の確率が正確に求まります。一方ORゲートにおいては、$\lambda t\ll 1$のとき、例えば$\lambda t<0.1$の場合には加算で事象の確率が求められます。ただしこの場合はレアイベント近似となります。以下に、近似ではなくExcelを使った方法で、簡単に正確に求めるやり方をご紹介します。

教科書等には信頼度で書かれていますが、故障率は不信頼度を時間平均したものですから、不信頼度で表すのが便利です。すると、ANDゲート=並列アイテムの不信頼度はアイテムの故障率(2)で求めた、 \[ F_{item}(t)=F_1(t)\cdot F_2(t)\cdot\cdots\cdot F_n(t)=\prod_{i=1}^n F_i(t)\tag{9.2} \]

のように、不信頼度の積で求められ、一方ORゲート=直列アイテムの不信頼度はアイテムの故障率(1)で求めた、 \[ F_{item}(t)=1-\prod_{i=1}^n[1-F_i(t)] \tag{8.4} \]

のように求められます。

Excelによるレアイベント近似を用いない積算法

確率計算において乗算、加算を用いるレアイベント近似(FTA(2)で説明予定)の場合は特に関数を用意する必要はありませんが、(8.4)のようにレアイベント近似を用いない場合の計算については、以下のように関数を用意すると便利です。

public function lambda(range as range) as string
dim val as double
val = 1#
foreach cell in range
val = val * (1- cell)
next
lambda = format((1# - val)/100000#, "0.000E+00")
end function

Excelにおいて、確率計算の積は乗算を行い、一方和については上記関数を用いて(8.4)を計算します。


※このブログは2016年に書かれたものであり、新しい研究結果を以下に連載していますので、参考にしてください
https://fs-micro.com/post/show/id/59.html


左矢前のブログ 次のブログ右矢