Posts Tagged with "BSV"

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

ソフトブロック解説 (5)

posted by sakurai on June 8, 2021 #415

sound階層

サウンド階層には4つの独立したサウンドステートマシンの他、サウンドミキサーやパラシリモジュールが存在します。4つの独立したサウンドステートマシンにより、同時に4音の発声が可能となっています。

図%%.1
図415.1 sound階層

サウンドステートマシンサブ階層

図415.2にサウンドステートマシンサブ階層を示します。このステートマシンが4チャネルあります。

  • mkSoundFSMモジュール --- サウンドROMを読み出すステートマシンであり、それをミキサーに出力する (BSV⇒Verilog)
  • サウンドROM --- Waveフォーマットデータを格納するROM (Xilinx IP)

図%%.2
図415.2 soundFSM階層

ミキサー&パラシリモジュール

  • ミキサーモジュール --- 4個の独立したサウンドFSMからの音データを加算し重畳する (Verilog)
  • パラシリモジュール --- ミックス後のパラレルデータをシリアルに変換し、シリアルDACに出力する (Verilog)

図%%.3
図415.3 ミキサー&パラシリ階層

コマンドバッファサブ階層

最後にコマンドバッファサブ階層を示します。

  • コマンドバッファ(OneStage) --- GameFSMとSoundFSMの間でコマンドを受け渡す (Verilog)

図%%.4
図415.4 コマンドバッファ階層

左矢前のブログ 次のブログ右矢

ソフトブロック解説 (4)

posted by sakurai on June 7, 2021 #414

graphics階層

基本的にはgraphic_controlモジュールが中心となる階層です。次の3つのモジュールから構成されています。

  • graphic_controlモジュール --- クロックとリセットを入力し、HS, VS, DT等のグラフィックディスプレイタイミングやVRAMアドレスを生成するモジュール (Verilog)
  • xslice --- VRAMデータ中のRGB成分のみを抜き出す (Xilinx IP)。VRAMはRGBの他にもう一面持っており、その面にはシールドデータのみが描画されています。しかしながら、その面は表示はされません。この情報は、自弾及び敵弾の衝突判定に用います。これによりシールドをピクセル毎に破壊することができます。

    図%%.1
    図414.1 ピクセル毎の衝突判定
  • display_outモジュール --- ディスプレイタイミング時に表示データを出力し、さらに爆発信号EXPにより全面赤表示にするモジュール (Verilog)

図%%.2
図414.2 graphics階層

左矢前のブログ 次のブログ右矢

ソフトブロック解説 (3)

posted by sakurai on June 4, 2021 #413

VRAM階層

VRAM階層は、図413.1で示すように以下の2モジュールから構成されます。

  • VRAM --- 256×256×4bitのデュアルポートメモリ (Xilinx IP)
  • Muxモジュール --- メモリダンプモジュールからのアドレスをマルチプレクスする (BSV⇒Verilog, 過去記事で設計)

図%%.1
図413.1 VRAM階層

左矢前のブログ 次のブログ右矢

ソフトブロック解説 (2)

posted by sakurai on June 3, 2021 #412

invader階層

引き続きinvader階層です。これはインベーダゲームの中心となる、GameFSM(invader_move)を含む階層です。基本的には、

  • GameFSMモジュール --- ゲームのシナリオを実行するFSM (BSV⇒Verilog)
  • パターンROM --- インベーダその他のビットマップを格納するROM (Xilinx IP)

の2つのモジュールにより、VRAMをR/Wすることにより絵を動かしています。この階層には、さらに以下のモジュールが存在します。

  • buttonsモジュール --- FPGAボード上のプッシュボタンと、PMODのジョイスティックインタフェースのOR取り (Verilog)

図%%.1
図412.1 invader階層

左矢前のブログ 次のブログ右矢

ソフトブロック解説

posted by sakurai on June 2, 2021 #411

ソフトブロック解説

ここから、簡単に各ソフトブロック階層の解説をします。全体ブロック図は過去記事に挙げてあります。全体ブロック図において、左から順に、clock階層、メモリダンプモジュール(ソフトブロック階層無し)、invader階層、VRAM階層、graphics階層、sound階層となっています。

clock階層

図411.1にclock階層の構造を示します。使用されているモジュールは全てXilinx IPです。

図%%.1
図411.1 clock階層
入力は
  • sys_clock --- 100MHzクロック
  • reset --- 負論理リセット

の2本です。出力は、

  • C921_6KHz --- 921.6KHzクロックであり、UARTのボーレートクロック
  • C60Hz --- 60Hzクロックであり、動画の1フレーム(tick)を決める基準クロック
  • C2MHz_FSMCLK --- 文字通り2MHzのFSMクロック
  • MCLK --- 11.289MHzクロックであり、サウンド用のマスタークロック
  • C40MHz --- 40MHzクロックであり、グラフィックのドットクロック
  • locked --- 負論理のリセット信号

バイナリカウンタ説明

  • c_counter_binary_0 --- clk_wizからの8MHzクロックを入力し、bit0(4MHz)、bit1(2MHz)、bit2(1MHz)と分周する。xslice_0はそのbit1(2MHz)を取り出し、C2MHz_FSMCLKとして出力する。
  • c_counter_binary_1 --- c_counter_binary_0からxslice_2はそのbit2(1MHz)を取り出し、c_counter_binary_1で0x411a(=16666)を計数したらリセットする。xslice_1ではその14bit(16.667msec=59.9988Hz)を取り出し、C60Hzとして出力する。これはデューティは50%ではないが、エッジを見るため問題ない。
  • c_counter_binary_2 --- clk_wizからの7.3728MHzクロックを入力し、bit0(3.6864MHz)、bit1(1.8432MHz), bit2(921.6KHz)と分周する。xslice_3はそのbit2(921.6KHz)を取り出しC921_6KHzとして出力する。

左矢前のブログ 次のブログ右矢

BSVによる歩行音の改善

posted by sakurai on May 28, 2021 #408

インベーダの歩行音

インベーダの歩行音は、現在は隊列に同期して出力されます。インベーダ一匹の歩行処理は60Hzで実施されるため、初期状態では55/60secに一度、最後の一匹では1/60secに一度歩行音が出力されます。

最後の一匹の時に、どうも歩行音が速すぎると思っていたら、過去記事のとおり、インベーダの数に応じた間隔で歩行音が出力され、必ずしも隊列の動作とは同期していないことが判明しました。アニメーションは、インベーダーの数に比例して徐々に速くなるのに比べ、サウンドは段階的に速くなるのは、どのような意図があるのでしょうか?

なるべくオリジナルに近づけるという方針から、今回はこれを実装します。

歩行音間隔タイマの実装

まず、過去記事の表を実装します。タイマ初期値の最大値は52なので6bitのレジスタが55個必要です。1から55までを使用しており、0を含めた56個を定義しています。

UInt#(6) inv_init_stimer[56] = {5, 5, 7, 9,11,12,13,14,16,16,19,19,19,21,21,21,21,24,24,24,
                         24,24,28,28,28,28,28,28,34,34,34,34,34,34,34,34,39,39,39,39,
                         39,39,39,46,46,46,46,46,46,46,52,52,52,52,52,52};

過去記事の歩行音間隔タイマの仕様に示すように、これはタイムアウトした際に、インベーダ数に応じた値でタイマを初期化するための表です。次に、歩行音間隔タイマ本体を実装します。

Reg#(UInt#(6)) inv_stimer <- mkRegU;

次に、サウンドパターンは4から7を繰り返すため、2bitのパターンレジスタを用意します。

Reg#(UInt#(2)) inv_spattern <- mkRegU;

初期化部分です。タイマの初期値は52とします。パターンの初期値は0とします。

        inv_stimer <= 52;
        inv_spattern <= 0;

隊の先頭で実施していた次のサウンド出力処理を削除します。

//          if (inv_ido != END_STATE) seq
//                sound(extend(inv_pattern) + 4); // from 4 to 7
//          endseq

その代わり、 全てのインベーダについて次の処理を追加します。

     // 全てのインベーダについて処理
     if (inv_stimer == 0) seq
           sound(extend(inv_spattern) + 4); // from 4 to 7
           inv_spattern <= inv_spattern + 1;
           inv_stimer <= inv_init_stimer[inv_no];
     endseq else seq
           inv_stimer <= inv_stimer - 1;
     endseq

これにより過去記事のような動作を行うはずです。⇒実施したところ、正しく動作したようです。


左矢前のブログ 次のブログ右矢

posted by sakurai on May 27, 2021 #407

受信したデータは以下の図に示すように、一文字4bitのデータが連続する、VRAM内容を示すログデータです(右側を一部省略)。

図%%.1
図407.1 受信データ(部分)

VRAMデータ4bitの意味は以下のとおりです。

  • bit3: バリケード(シールド)=非画像情報
  • bit2: R=画像情報
  • bit1: G=画像情報
  • bit0: B=画像情報

従って、非画像情報を無視し、次のコードにより画像フォーマットであるPPMに変換します。

log2ppm.c

#include 
void main() {
      char line[4096];
      char ch;
      printf("P3\n256 256\n255\n");
      for(int y = 0; y <= 255; y++) {
            fgets(line, sizeof(line), stdin);
            for(int x = 0; x <= 255; x++) {
                  ch = line[x] - 0x30;
                  if ((ch & 0x4) != 0) printf("255 ");    // R
                  else printf("0 ");
                  if ((ch & 0x2) != 0) printf("255 ");    // G
                  else printf("0 ");
                  if ((ch & 0x1) != 0) printf("255 ");    // B
                  else printf("0 ");
            }
            printf("\n");
      }
}

以下のコマンドによりフィルタを作成します。

$ gcc -O log2ppm.c -o log2ppm

上記のようにフィルターとして実行し、ログデータを画像ファイルに変換します。

$ ./log2ppm putty.ppm

生成されたファイルを画像処理ツールであるgimp2で開くと以下のように正常に受信されています。

図%%.2
図407.2 受信画像

以上で、ゲームのメモリダンプ機能がひとおおり完成しました。ゲームの状態を吸い出したのは、これをオートエンコーダによりCNNに認識させるのを目的としています。


左矢前のブログ 次のブログ右矢

posted by sakurai on May 26, 2021 #406

出来上がったモジュールの図を図406.1に示します。

図%%.1
図406.1 モジュールの入出力

シリアルデータ出力はUART_TXに接続します。これによりFPGAボード(正確にはアダプタボードであるAES-ACC-U96-JTAGボード)上でUSBに変換され、ケーブルを経由してPCのPuttyで受信します。今回は230,400 bps、COMは6番だったので、以下のようにPuttyの受信パラメータ及びログの場所を設定します。

図%%.2
図406.2 受信パラメータの設定

図%%.3
図406.3 ログの場所の設定

ゲームをスタートさせて、FPGAボード上のダンプスイッチを押すと、ゲームが一時停止し、FPGAボードからはPuttyに対して以下のようなデータを送信して来ます。右端はチェックサムですが、この程度の通信速度ではデータ化けはしていないようです。

図%%.4
図406.4 受信データ(部分)

左矢前のブログ 次のブログ右矢

posted by sakurai on May 25, 2021 #405

システム構成図

図%%.1
図405.1 システム構成図

ハンドシェークアルゴリズム

以下に処理のハンドシェークを示します。

  • ボード上のスイッチが押されstart信号が出力される。
  • メモリダンパはstartに基づき、sreqを出力し、GameFSMに停止を要求。
  • GameFSMは停止要求の有無に関わらず、フレームの最後で60Hzの立ち上がりを待つ。その際にcwaitを出力。
  • メモリダンパはcwait(=GameFSMの停止)に基づき、以下のメモリダンプ動作をアドレス分だけ繰り返し。
  •     selをTrueにしてバス権(アドレス権)を取得
  •     アドレスを出力
  •     データを取得
  •     アスキー化してシリアルデータとして出力
  • メモリダンパは終了時にsreqをネゲート。
  • GameFSMはsreqがネゲートされるのを待ち、cwaitをネゲートしフレーム先頭から再開。

fig405-2.svg
図405.2 タイミングチャート

ゲームFSM側のBSVコードの修正

修正したGameFSM.bsvのウエイトルーチンを示します。

GameFSM.bsv

// 時間待ち
function Stmt wait_timer(
              UInt#(12) count
              );
   return (seq
   testOut <= True;
      repeat(pack(extend(count))) seq
         await(tic == 0);
         await(tic == 1 && sreq == 0);
      endseq
   testOut <= False;
   endseq);
endfunction

元々のtest出力信号(wait時を示す)testOut信号をそのままcwait(ゲームFSMのwaitを示す)として使用します。

元々は、60Hzの立下りを

         await(tic == 0);

このように待った後、立ち上がりに同期して

         await(tic == 1);

このように、ウエイトをリリースする(ウエイトルーチンから抜ける)仕様でした。今回それに加えて、メモリダンプからの停止要求がリリースされていることを

         await(tic == 1 && sreq == 0);

このようにAND条件で加えました。これにより、ウエイトしている状態は元々testOut(=cwait)として出力されていたため、それを用いてメモリダンプの開始信号としています。

GameFSMのインタフェースにメモリダンパからの停止要求信号sreqを加えます。

GameFSM.bsv

(* prefix="" *)
   method Action sreqm(Bit#(1) in_sreq);

次にワイヤ定義を記述します。

GameFSM.bsv

Wire#(Bit#(1)) sreq <- mkWire;

最後にメソッド定義を示します。

GameFSM.bsv

method Action sreqm(Bit#(1) in_sreq);
    sreq <= in_sreq;
endmethod

左矢前のブログ 次のブログ右矢

posted by sakurai on May 24, 2021 #404

メモリダンプモジュールを組み込むにあたり、前回までテストベンチ(=最上位)であった階層をモジュール化します。外部インタフェースは図404.1のとおりです。

図%%.1
図404.1 モジュールの入出力
  • start (入力): ボード上のスイッチであり、画像ダンプの起動スイッチです。
  • sreq (出力): GameFSMに対して(デュアルポートメモリに対して)バス権を要求する信号です。
  • cwait (入力): GameFSMが60Hzの同期待ち状態にある信号です。これはバス権を放棄している信号でもあるので、流用します。
  • addr (出力): デュアルポートメモリアドレスです。Muxを介してデュアルポートメモリに接続します。
  • data (入力): デュアルポートメモリからの4bitデータです。
  • sel (出力): Muxの制御信号であり、Trueでデュアルポートメモリのアドレスがメモリダンプモジュール側であることを示します。
  • read (出力): シリアルデータ出力です。

入力

(* prefix="" *)  // method名を削除するため
method Action startm(Bool newstart);
(* prefix="" *)
method Action datam(Data newdata);
(* prefix="" *)
method Action cwaitm(Bool newcwait);

(* synthesize, always_enabled="startm, datam, cwaitm" *)   // EN_xxxを削除するため

出力

method Bool sreqm();
method Addr_t addrm();
method Bool selm();
method Bit#(1) readm();

(* synthesize, always_ready="sreqm, addrm, selm, readm" *)   // RDY_xxxを削除するため

入出力は上記のとおりメソッドで定義し、入力はmethod Action、出力はmethodで定義します。


左矢前のブログ 次のブログ右矢


ページ: