25 |
新方式によるPUAの導出 (7) |
前項までで、正確な$Q_{\text{exact},n}(t)$と近似の$Q_\text{approx}(t)$が求められたので、誤差評価を行います。パラメータは$\lambda=100FIT$、$T_\text{lifetime}=$10万時間、$K=0.5$、$\tau=$1か月とします。すると、$T_\text{lifetime}=1.0\times10^5[H]$、$\tau=730[H]$であり、 $$ Q_n(t)=F(t)-\img[-1.35em]{/images/withinseminar.png}\ n=\lfloor t/\tau\rfloor\ge1\tag{761.1} $$ これより、正確な車両寿命での不稼働確率は、 $$ Q_{\text{exact},136}(T_\text{lifetime})=0.005023250473883639 $$
一方近似式では、 $$ Q_\text{approx}(t)=(1-K_\text{MPF})F(t)+K_\text{MPF}F(u),\ u=\bmod\tau\tag{761.2} $$ これより、 $$ Q_\text{approx}(T_\text{lifetime})=0.005011081829447039 $$
両方の値から誤差は車両寿命において相対誤差は、 $$ \frac{Q_{\text{exact},136}(T_\text{lifetime})-Q_\text{approx}(T_\text{lifetime})}{Q_\text{approx}(T_\text{lifetime})}=\frac{0.005023250473883639-0.005011081829447039}{0.005023250473883639}\\=\img[-1.35em]{/images/withinseminar.png}[\%] $$ と計算され、PMHFの計算上では問題にならないレベルだと判明しました。
ちなみに、前項のChatGPTの作成したグラフ描画ソフトのパラメータを上記のパラメータに置き換え、グラフを車両寿命まで作成しました。次にChatGPTにプログラムを渡して、グラフは不要だからPUAの車両寿命における値を$Q_\text{exact}$と$Q_\text{approx}$の2つを求めて、誤差評価をしてと依頼したところ、修正されたプログラムにより上記の値が算出できました。
ChatGPTにプログラムを書いてもらうのはかなり実施して来ましたが、プログラムを渡してこんな風に改造してというのは新しい試みです。なぜなら、他人のプログラムの改造は人間は嫌がるからです。機械は嫌がらずに素直に実行すると言うのは新しい経験でした。
なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。
Leave a Comment