Article #191

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

確率論 (14)

posted by sakurai on December 13, 2019 #191

可積分

前記事のフィルトレーションの定義中に可積分が前提とされていましたが、定義されていなかったので定義しておきます。

$\forall t\in T$について$X_t$が$L^1$に属するとき、すなわち$E(\mid X_t\mid)\lt \infty\ \ (\forall t\in T)$のとき、$X$を可積分であるという。

マルコフ過程

確率過程$X$が生成するフィルトレーションを$\{\mathcal{F}^X_t\}$とするとき、任意のBorel集合$\mathcal{B}$に対して、 $$ P(X_u\in \mathcal{B}\mid\mathcal{F}^X_t\}=P(X_u\in\mathcal{B}\mid X_t)\ \ \ \ \ (u\gt t) $$ であるとき、$X$をマルコフ過程という。

式で明らかなように、システムがいかなる過程を通ってきたとしても、ある状態になるのは、現在の状態のみに依存し、過去の状態に依存しないことを意味します。この性質をマルコフ性と呼びます。


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax. If you include an ad such as http://, it will be invalidated by our AI system.

Please enter the numbers as they are shown in the image above.