Posts Issued in August, 2023

$Q(t)$とChatGPT (16)

posted by sakurai on August 14, 2023 #644

人間:

以前に「ユーザーが求めた微分の計算を行うとき、ChatGPTは実際に微分の計算を実行するわけではなく」と回答しました。一方今回は「微分の基本的な法則について理解してい」るとのこと。これは論理矛盾ですが、とちらが正しいのでしょうか?

ChatGPT:

ご質問ありがとうございます。その点について明確に説明いたします。

私が「理解している」と言ったのは、GPTモデルがその計算を記憶し、理解しているという意味ではなく、訓練データに基づいて微分の計算や法則についての情報を生成する能力があるという意味です。GPTは人間のように「理解」するわけではなく、大量のテキストデータからパターンを学び、そのパターンに基づいて新たなテキストを生成します。

つまり、「理解している」という表現は、このAIが微分の法則を「知っている」わけではなく、その計算を模倣することができるという意味での「理解」です。また、私が微分の計算を「実行」するわけではないと言ったのは、このAIが数学的な計算をプログラムとして「実行」するわけではなく、学習した知識を基に回答を生成するという意味です。

したがって、論理的に矛盾しているわけではありません。それぞれの表現は、AIが情報を処理し、応答を生成する方法を異なる角度から説明したものです。


  • 単なるパターンマッチングのようです。それにしては「理解力」がありそうで、不思議なことです。逆に、東大の松尾先生がおっしゃったように「人間の理解力なんてその程度のもの」ということかもしれません。
  • 少々定性的な議論に深入りして面白くないので(「私は単語をこのような意味で用いた」等の言い逃れができるので)、定量議論に戻ってグラフを書かせることにします。

左矢前のブログ 次のブログ右矢

posted by sakurai on August 11, 2023 #643

8月8日がRAMSに対する無記名論文の投稿締め切りであり、8月9日から査読期間ですが、今回は初日に査読コメントが届きました。論文のタイトルは以下のとおりです。

"Bridging the Gap of the Derivation Process in ISO 26262 Probabilistic Metric (PMHF) Formulas"
(ISO 26262確率論的指標(PMHF)公式の導出プロセスのギャップを埋める)

以下は査読者コメントです。

  1. 論文タイトル「ギャップ」が明確にわかる名称に変更すること。
  2. 論文の論理的推論を「ギャップ」を新しい名称に変更し、SUMMARY & CONCLUSONSにコンパクトにまとめる。
  3. ギャップの前提条件とシナリオの違い、革新的な解決策に焦点を当てる。

今回の論文は、ISO 26262規格のPMHF方程式の誤りを指摘し、それを修正すると我々の提案式と一致することを数学的に証明しており、内容としてはロバストなものだと考えています。しかしながら、それを題名でダイレクトに書くのがはばかれたため、婉曲に規格式と我々の提案式のギャップという表現にしたものです。

一方、査読者はギャップという言葉が曖昧であり、何と何の間がギャップで規格になんの問題があるのかがわかりにくかったようです。従って、対処としては本来「規格PMHF方程式の誤りとその解決」とするのが明快です。しかしながら、それでは規格に対して挑戦的になるため、ChatGPTに問題点とその解決ではあるものの、ある程度婉曲になる題名を数案出してもらいました。

"Identifying and Addressing the Challenges in ISO 26262 PMHF Formulas: A Proven Path to Our Proposed Solution"

このタイトルは「問題点を特定し、対処する」というプロセスを強調し、それが提案された解決策への確実な道筋であることを示します。

少々長いのと、題名では省略語は使用できないため、

"Identifying and Addressing the Challenges in ISO 26262 Probabilistic Metric (PMHF) Formulas"
(ISO 26262確率論的指標(PMHF)公式の課題の特定と対処)

と修正します。さらに、

"Revisiting the Derivation Process in ISO 26262 Probabilistic Metric (PMHF) Formulas: A Proposed Approach"

「再検討」という言葉は、改善の余地があることを示唆するのに十分婉曲ですが、明確な問題提起としても機能します。

これも短縮して、

"Revisiting the Derivation Process in ISO 26262 Probabilistic Metric (PMHF) Formulas"
(ISO 26262確率論的指標(PMHF)公式の導出プロセスの再検討)

というのも良いと思っています。まさに導出過程に問題点があることが、第2版解説書から判明したからです。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (15)

posted by sakurai on August 10, 2023 #642

人間:

微分の基本的な法則はどの程度知っているのでしょうか?

ChatGPT:

私は以下のような微分の基本的な法則について理解しています:

  • 定数の微分:定数cの微分は0です。
  • 定数倍の法則:$(cf)' = cf'$ です。ここで、$c$は定数で、$f$は微分可能な関数です。
  • 和の法則:$(f + g)' = f' + g' $です。ここで、$f$と$g$は微分可能な関数です。
  • 積の法則:$(fg)' = f'g + fg'$ です。ここで、$f$と$g$は微分可能な関数です。
  • 商の法則:$(f / g)' = (f'g - fg') / g^2$ です。ここで、$f$と$g$は微分可能な関数で、gはゼロではありません。
  • 連鎖の法則:$(f(g(x)))' = f'(g(x)) * g'(x)$ です。ここで、$f$と$g$は微分可能な関数です。

また、特定の関数の微分についても知っています。例えば:

  • $x^n$の微分は $nx^{(n-1)} $です。
  • $e^x$の微分は $e^x$ です。
  • $\text{ln}(x)$の微分は $1/x$ です。

以上は基本的な一部ですが、より高度な微分の法則や技術についても理解しています。


微分の法則を理解しているとのことです。これは、以前に「ユーザーが求めた微分の計算を行うとき、ChatGPTは実際に微分の計算を実行するわけではなく」と回答したのとの間には矛盾があるようです。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (14)

posted by sakurai on August 9, 2023 #641

人間:

数学的な規則はどこまで理解しているのでしょうか?例えば(a+b)(c+d)の展開は正しくできるようですが。

ChatGPT:

ChatGPTは、基本的な数学的操作と規則、包括的な代数、微積分、幾何学、統計学などの高度な概念についても理解しています。例えば、次のような規則や公式について理解しています:

  • 加算、減算、乗算、除算の基本的な操作
  • 指数と対数の法則
  • 二項定理を用いた式の展開(例:$(a+b)(c+d) = ac + ad + bc + bd$)
  • 微分と積分の基本的な法則
  • 平均、分散、相関などの統計的な指標の計算
  • トリゴノメトリーの基本的な恒等式(例:$\sin^2(x) + \cos^2(x) = 1$)

しかし、複雑な問題や抽象的な概念については、しばしば誤りを含む解答を提供することがあります。また、数学的な理解が直感的でなく、記憶に基づくものであるため、特定のコンテキストや問題の複雑さによっては間違った結果を出すこともあります。

これらの制約は、現在のAI技術の限界を反映したものであり、モデルの精度を向上させるための研究が続けられています。


基本的な計算法則は「理解」しているようです。それにしては微分での単純ミスが気になります。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (13)

posted by sakurai on August 8, 2023 #640

人間:

ChatGPTはAIで機械であるのに、機械的な計算誤りをするのはなぜでしょうか?具体的には、 $$Q(t)=(1−K_\text{MPF})F(t)+K_\text{MPF} F(u)$$ を時間微分したら、 $$q(t)=\frac{dQ(t)}{dt}=(1−K_\text{MPF})f(t)−K_\text{MPF} f(u)$$ となると回答しました。これは単純な計算ミスですが、どうしてミスしたのでしょうか?

ChatGPT:

大変申し訳ございません。ChatGPTが数学的なミスを犯す理由は、その基本的な動作の仕組みに由来します。GPTは、大量のテキストデータから人間の言語を模倣する方法を学び、特定の入力に対する最も適切な出力を予測します。しかし、それは単に学習データ内のパターンを検出することでこれを達成しており、内部的には数学的な演算を理解しているわけではありません。

したがって、ユーザーが求めた微分の計算を行うとき、ChatGPTは実際に微分の計算を実行するわけではなく、訓練データ内で見たパターンに基づいて最も適切な答えを生成しようとします。そのため、訓練データに含まれるパターンが間違っていたり、パターンが不完全だったりすると、結果として間違った答えを出力することがあります。

また、微分などの数学的操作は、文脈によって適用されるべき正しい規則が異なることがしばしばあります。これに対応するためには、真の数学的理解が必要で、現行のAIモデルではこれを完全には達成できません。

以上の理由から、ChatGPTは時折、数学的な誤りを犯すことがあります。それらのミスは、現行のAI技術の制限を反映したものであり、人間が間違いを犯すのとは根本的に異なる形で発生します。


「内部的には数学的な演算を理解しているわけでは」無いとのことです。むしろ、単なるパターンマッチでこれほどの推論ができるものでしょうか。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (12)

posted by sakurai on August 7, 2023 #639

人間:

説明が間違いです。$f(t)$は故障率ではなくPDFと呼ばれます。

ChatGPT:

ご指摘いただき、ありがとうございます。修正いたします。

確かに、$f(t)$ は確率密度関数(PDF: Probability Density Function)または故障率密度(PDT: Point Density of Failures)と呼ばれ、時間 $t $における故障の発生確率密度を表します。

同様に、$f(u)$ は時間 $u$ での故障の発生確率密度を表し、$K_\text{MPF}$ は検出率を表します。これは、時間$ t $と $u=t-n\tau$ における故障の一部が検出され修理されることを示しています。

したがって、$q(t)$ は以下のように表されます。

$$ q(t) = (1-K_\text{MPF})f(t) - K_\text{MPF} f(u) $$

ここで、$u=t-n\tau$ です。これは、故障が発生し、それが検出され修理されない確率と、前回の修理以降の故障が検出・修理される確率の差を表しています。

人間:

差ではなく和ではないですか?さらに最後の行ですが、$f(t)$は確率ではなく、確率密度です。

ChatGPT:

ご指摘いただき、ありがとうございます。その通りです。私の説明は誤っていました。

確かに、$f(t)$ は確率ではなく、確率密度関数(Probability Density Function、PDF)です。これは、時間 $t$ における故障の確率密度を表します。

同様に、$f(u)$ は時間 $u$ での故障の確率密度を表します。

したがって、PUD (Point Unavailable Density) の $q(t)$ は以下のように表されます:

$$ q(t) = \img[-1.35em]{/images/withinseminar.png} $$

これは、時間 $t$ における故障の確率密度とそれが未検出・未修理である確率、および前回の修理以降の故障が検出・修理される確率密度の和を表しています。


ChatGPTは機械にも関わらずよく計算間違いをします。機械なら機械的な計算くらいは間違えないで欲しいものです。ついでにミスの理由を聞いてみます。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (11)

posted by sakurai on August 4, 2023 #638

人間:

$Q(t)$ (Point Unavailability)を時間微分したものが$q(t)$ (Point Unavailable Density; PUD)ですが、どのような式になりますか?

ChatGPT:

不稼働度 $Q(t)$ の時間微分は、その瞬間の不稼働確率密度 $q(t)$ を与えます。先ほどの $Q(t)$ の式から、以下のように $q(t)$ を得ることができます。

$$ q(t) = \frac{dQ(t)}{dt} $$

この微分を計算すると、次の結果が得られます。

$$ q(t) = \img[-1.35em]{/images/withinseminar.png} $$

ここで、$f(t)$ は時間 $t$ における故障率(PDT: Point Density of Failures)であり、 $f(u)$ は時間 $u$ における故障率です。また、 $K_\text{MPF}$ は検出率を表します。これは、時間 $t$ と $u=t-n\tau$ における故障の一部が検出され修理されることを示しています。


第2項の符号が誤っています。また、説明において、$f(t)$を誤って「故障率」と呼んでいるのは見過ごせません。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (10)

posted by sakurai on August 3, 2023 #637

人間:

それでは不稼働度$Q(t)$はどうなりますか?$F(t)$を用いて表してください。できるかぎり簡約化して$F(t)$項でまとめて表してください。定数は先頭に出してください。

ChatGPT:

稼働度 $A(t)$ の最終形を $1 - F(t)$ によって表現し、それを用いて不稼働度 $Q(t) = 1 - A(t)$ を求めます。

稼働度 $A(t)$ の最終形式は次の通りでした:

$$A(t) = (1 - K_\text{MPF}) (1 - F(t)) + K_\text{MPF} (1 - F(u))$$

これを $Q(t)$ の式に代入します:

$$Q(t) = 1 - {(1 - K_\text{MPF})(1 - F(t)) + K_\text{MPF}(1 - F(u))}$$

これを整理します:

$$Q(t) = F(t) - K_\text{MPF} (F(t) - F(u))$$

更にこれを整理すると、

$$Q(t) = (1 - K_\text{MPF})F(t) + K_\text{MPF} F(u) $$

となります。これは不稼働度 $Q(t)$ が不信頼度 $F(t)$ と $F(u)$ の組み合わせで表されることを示しています。ただし、これは修理の間隔 $\tau$ が一定である場合に限ります。


先生側(人間側)の手助けもあり、$Q(t)$を正しく導出できました。一方、ChatGPTとの会話の中で、(626.2)の式の誤りも検出できました。教えるのが一番の勉強とはまさにこのことです。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (9)

posted by sakurai on August 2, 2023 #636

人間:

$A(t)$はどうなりますか?$u\equiv t-n\tau$として最終形の$A(t)$を$t$と$u$で表してください($n$と$\tau$を消去)。$R(t)$項でまとめ、定数は項の先頭に出してください。

ChatGPT:

変数変換 $u \equiv t - n\tau$ を用いて稼働度 $A(t)$ の表現を変換します。初めに求めた最終形

$$ A(t) = R(t) - K_\text{MPF} R(t) + K_\text{MPF} R(t - n\tau) $$

で、$t - n\tau$ を $u$ とすると、式は以下のように書き換えられます:

$$ A(t) =\img[-1.35em]{/images/withinseminar.png} $$

これは、時間 $t$ での稼働度 $A(t)$ が信頼度 $R(t)$ と前回の修理からの時間 $u$ での信頼度 $R(u)$ の組み合わせであることを示しています。ここで、修理の間隔 $\tau$ と修理の回数 $n$ が消去されています。


細かく指示した結果、$A(t)$を正しく導出できました。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢

$Q(t)$とChatGPT (8)

posted by sakurai on August 1, 2023 #635

人間:

なるほど、その理由がわかりました。 $$m(x)=K_\text{MPF}F(i\tau)$$ としていたのが誤りでした。

正しくは、$m(x)$はリニューアルデンシティなので、瞬間の変化量です。修理量は検査区間において 積分した故障について一定値$K_\text{MPF}$をかけるので、 $$\int_0^\tau m(x)dx = \int_0^\tau K_\text{MPF}f(x)dx = K_\text{MPF}F(\tau)$$ とすべきでした。これであれば次元の矛盾は解消されます。

ChatGPT:

ご説明いただきありがとうございます。おっしゃるとおり、$m(x)$はリニューアル密度として瞬間的な変化を表し、故障の累積に一定の値をかける形で修理量が表現されます。

これに基づき、$\int_0^{\tau} m(x)dx = \int_0^{\tau} K_\text{MPF} f(x)dx = K_\text{MPF}F(\tau)$と修正した形で表現すると、次元の矛盾が解消されます。

したがって、稼働度 $A(t)$ の方程式は次のようになります。

$$ A(t) = R(t) + K_\text{MPF} \left[ \sum_{i=1}^{n} (1 \cdot R(t-i\tau) - R(\tau) \cdot R(t-i\tau)) \right] $$

さらに、$i=n$ のときの第1項と、$j=0$ のときの第2項のみがキャンセルされず残ります。そのため、結果は次のようになります。

$$ A(t) = \img[-1.35em]{/images/withinseminar.png} $$

これにより、次元的な問題が解消され、稼働度 $A(t)$ の表現が一貫性を持つようになりました。ただし、具体的な値は $R(t)$ の形状や特性、そして $K_\text{MPF}$ の値によります。


(626.2)の式は誤っていました(現在は修正済み)。$m(x)$は確率密度なので区間で積分しなければ修理度になりません。ChatGPTとの対話により、この誤りに気付くことができました。

なお、本稿はRAMS 2025に投稿予定のため一部を秘匿しています。


左矢前のブログ 次のブログ右矢


ページ: