Posts Issued on September 4, 2023

posted by sakurai on September 4, 2023 #656

人間:

$\tau_n$での検出可の確率を$\Pr\{\text{fault detected at }\tau_n\}=K (const.)$ 検出不可の確率を$\Pr\{\text{fault not detected at }\tau_n\}$、 時刻aからbまでにSMにフォールトが起きる確率を$\Pr\{\text{SM receives a fault in }(a, b]\}$ と表記してください。

ChatGPT: (中略)

指定された表記に基づいて、各確率を以下のように定義します。

  • $ \tau_n $での検出可の確率:$ \Pr\{\text{fault detected at } \tau_n\} = K $ (定数)
  • $ \tau_n $での検出不可の確率:$ \Pr\{\text{fault not detected at } \tau_n\} $
  • 時刻$ a $から$ b $までにSMにフォールトが起きる確率:$ \Pr\{\text{SM receives a fault in} (a, b]\} $

これらの確率を用いると、不稼働の条件を以下のように表現できます。

検出不可の場合

$$ \Pr\{\text{fault not detected at } \tau_n\} \cdot \Pr\{\text{SM receives a fault in } (0, t]\} $$

検出可の場合

$$ K \cdot \Pr\{\text{SM receives a fault in } (\tau_n, t]\} $$

上記の式は、検出の可・不可に基づいて、SMが不稼働になる確率を表現しています。

人間:

指数分布するフォールト事象について、以下のことが知られています。 $$\Pr\{\text{fault detected at }\tau_n\}=K (const.)$$ $$\Pr\{\text{SM receives a fault in }(a, b]\}=\int_a^b f_\text{SM}(x)dx = F_\text{SM}(b)-F_\text{SM}(a)$$ ただし、$f_\text{SM}(t)$はPDF, $F_\text{SM}(t)$はCDF tにおける不稼働度$Q_\text{SM}(t)$を、SMの不信頼度$F_\text{SM}(t)$を用いて表現してください。$u:=t-\tau_n$として$\tau$及び$\tau_n$を消去したうえで$t, u$で表現してください。exponential表現は使用しないこと。

ChatGPT:

指定された条件に基づいて、$ t $における不稼働度 $ Q_{\text{SM}}(t) $ を計算し、$ \tau $ 及び $ \tau_n $ を消去して $ t, u $ で表現します。変数 $ u $ は $ u = t - \tau_n $ と定義されています。

まず、前述の不稼働確率をSMの不信頼度 $ F_{\text{SM}}(t) $ として表現するために、以下の式を考えます。

検出不可の場合

$$ \begin{eqnarray} \Pr\{\text{fault not detected at } \tau_n\} \cdot \Pr\{\text{SM receives a fault in } (0, t]\} &=& (1 - K) \cdot (1 - e^{-\lambda t}) \\ &=& (1 - K) \cdot F_{\text{SM}}(t) \end{eqnarray} $$

検出可の場合

$$ \begin{eqnarray} K \cdot \Pr\{\text{SM receives a fault in } (\tau_n, t]\} &=& K \cdot (e^{-\lambda \tau_n} - e^{-\lambda t}) \\ &=& K \cdot (F_{\text{SM}}(\tau_n) - F_{\text{SM}}(t)) \end{eqnarray} $$

これらの式を合計すると、$ t $ における不稼働度 $ Q_{\text{SM}}(t) $ が得られます。

$$ \begin{eqnarray} Q_{\text{SM}}(t) &=& (1 - K) \cdot F_{\text{SM}}(t) + K \cdot (F_{\text{SM}}(\tau_n) - F_{\text{SM}}(t)) \\ &=& (1 - K) \cdot F_{\text{SM}}(t) + K \cdot F_{\text{SM}}(t - u) - K \cdot F_{\text{SM}}(t) \\ &=& F_{\text{SM}}(t) - K \cdot F_{\text{SM}}(t) + K \cdot F_{\text{SM}}(t - u) \end{eqnarray} $$

ここで、exponential表現を使用せず、$ \tau $ 及び $ \tau_n $ を消去して $ t, u $ で表現しました。この式が、指定された条件に基づく不稼働度の表現となります。


計算間違いがあるようです。さらに、単純に積分の式を当てはめても正解が出ません。


左矢前のブログ 次のブログ右矢