21 |
FTA (2) |
レアイベント近似
アイテムが故障する確率=トップ事象確率を求めるのがFTAの役割であるため、基事象の確率を求め、それを積算します。それぞれのイベントを$e_i$で表し、イベントの確率を$P\{e_i\}$で表すとき、MCSが$\{1\},\{2\},\{3,4,5\},\{6\},\{7,8\}$で表されるTOP事象の侵害確率P{TOP}は、直列アイテムでの不信頼度の(8.4)と並列アイテムでの不信頼度の(9.2)とを用いて、(21.1)と表されます。 \[ P\{TOP\}=1-(1-P\{e_1\})(1-P\{e_2\})(1-P\{e_3\}P\{e_4\}P\{e_5\})(1-P\{e_6\})(1-P\{e_7\}P\{e_8\})\tag{21.1} \]
ここで、(21.1)の比較的小さい値の項を省略した、ORを加算、ANDを乗算とする計算で求めるレアイベント近似方法があります。 \[ P\{TOP\}\approx P\{e_1\}+P\{e_2\}+P\{e_3\}P\{e_4\}P\{e_5\}+P\{e_6\}+P\{e_7\}P\{e_8\}\tag{21.2} \]
アイテムの故障率(2)で議論したように、これが可能なのは基事象確率が低い場合です。本来はダブルカウント分の確率を引くべきところ、ダブルカウント分の確率が小さく無視可能である場合に限り、レアイベント近似が成立します。
Leave a Comment