16 |
FPGAで機械学習 |
機械学習
そもそもFPGAボードを購入したのは機械学習(以降ML)をさせたかったのですが、その前に設計フローの勉強としてインベーダーゲームを作成しました。作成途中では拡張ボードが必要になり、急遽Pt板設計CADを勉強したりPt板を発注したりという作業が発生しましたが、今回からMLの話題に移ります。
エッジAI
AIもMLも同様な意味で使われていますが、本命はエッジAIです。現状は良いモデルの探求や膨大な学習の必要性から、クラウド側でGPUが多用されています。ただ、一旦学習が完了すればそれを多数の端末にデプロイします。せいぜい数十個のGPUがセンター側で必要なのに対し、車載ADAS/ADでは数百万台出荷されるため、半導体ビジネスからみると圧倒的にエッジAIのほうが魅力的です。
エッジAIの部品
エッジAIにおいては何より低電力、低コストが求められるので、一台10万円もするようなGPUは、コスト、電力、発熱共に使用できません。従来はFPGAも高価でしたが、近年のXilinx Zynq UltraScale+等のようなチップであれば価格はGPUの1/100のオーダーです。ということでFPGAでMLすることを考えます。
エッジAIのフレームワークDNNDK
フレームワークとはAIの業界ではTensorFlowやChainerを意味することが多いのですが、ここではエッジAIのソフトウェア基盤の意味で用いています。具体的にはDeePHiの作成した以下に示すDNNDKフレームワークを使用します。DeePHiはXilinxによって昨年買収されました。
Leave a Comment