9 |
DPF (2) |
DPFの定義
ISO26262でいうDPFは、前述のように、まずエレメントAの故障がおき、かつレイテント状態(故障分類(1)で解説)になっていて、それに関連するエレメントBの故障が引き続いて起きた場合が対象となります。ここで関連するとは、エレメントAが主機能の場合はエレメントBは安全機構、エレメントAが安全機構の場合はエレメントBは主機能という意味です。主機能とそれとは別の主機能の故障はDPFとは考えず、一点故障が別々の主機能に2回起きたと考えます。
さて、DPFの確率計算を行う場合、単純に主機能故障の起きる確率$PoF_{M,T_{lifetime}}=\Pr\{X_M\lt T_{lifetime}\}$と安全機構の故障の起きる確率$PoF_{SM,T_{lifetime}}=\Pr\{X_{SM}\lt T_{lifetime}\}$の乗算とはなりません。一般に安全機構が故障するとレイテントになる可能性が大であり、主機能は冗長構成を取らない限り、故障してレイテントになることはありません。従って、主機能故障がレイテントになる確率と安全機構がレイテントになる確率は異なるため、主機能と安全機構のどちらが先に故障したかで場合を分けて計算を行います。
A⇒BのDPFの確率計算
エレメントAが故障してレイテント状態になっている場合にエレメントBが故障する確率の導出を行います。まず、時刻$t$において、エレメントAが故障してレイテントとなっている場合の確率は、時刻$t$におけるエレメントAの不信頼度に他ならないため、(14.1)となります。 \[ \Pr\{\text{A is a latent state at }t\}=\Pr\{X_A\leq t\}=F_A(t)\tag{14.1} \]
次に、時刻$t$までエレメントBは故障しておらず、時刻$t+\Delta t$までの微小区間$(t, t+\Delta t]$にBが故障する微小確率$\Pr\{\text{B receives a fault in}(t, t+\Delta t]\}$は、(14.2)となります。 \[ \Pr\{\text{B receives a fault in}(t, t+\Delta t]\}=\Pr\{t\lt X_B\leq t+\Delta t\}=F_B(t+\Delta t)-F_B(t)\\ =f_B(t)\Delta t=\lambda_B R_B(t)\Delta t\tag{14.2} \]
従って、$(t, t+\Delta t]$の微小DPF確率は両者の積となるため、(14.3)となります。
$\Delta t\rightarrow 0$とした極限を$dt$で表し、0から$t$まで積分すると、時刻$t$までのDPF確率が(14.4)として求められます。
ここでexponential関数のマクローリン展開は(14.5)です。 \[ e^x=1+x+\frac{x^2}{2}+\cdots\tag{14.5} \]
(14.5)の2次の項までとり(14.3)に代入すれば、(14.6)のようにA⇒BのDPFの確率の近似式が求められます。
A⇒BのDPFの確率の式:
Leave a Comment