9 |
2nd edition流PMHF計算における積分公式 |
次稿において、規格第2版のやり方に従ってPMHF計算をすると、新たに以下の2つの公式が必要になるので、公式の導出を示します。近似のポリシーは$\lambda$の2乗までを残すものとします。
No.1
$$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}f_\text{SM}(t)f_\text{IF}(t)dt=\lambda_\text{SM}\lambda_\text{IF} \tag{470.1} $$ 証明:(470.1)に$f_\text{SM}(t)=\lambda_\text{SM}e^{-\lambda_\text{SM}t}$及び、$f_\text{IF}(t)=\lambda_\text{IF}e^{-\lambda_\text{IF}t}$を用いて、 $$ \require{cancel} \text{L.H.S of }(470.1)=\frac{\lambda_\text{SM}\lambda_\text{IF}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-(\lambda_\text{SM}+\lambda_\text{IF})t}dt=\frac{\lambda_\text{SM}\lambda_\text{IF}}{T_\text{lifetime}}\left[\frac{1}{\lambda_\text{IF}+\lambda_\text{SM}}e^{-(\lambda_\text{IF}+\lambda_\text{SM})t}\right]^0_{T_\text{lifetime}}\\ =\frac{\lambda_\text{SM}\lambda_\text{IF}}{T_\text{lifetime}(\lambda_\text{IF}+\lambda_\text{SM})}\left(1-e^{-(\lambda_\text{IF}+\lambda_\text{SM})T_\text{lifetime}}\right)\approx\frac{\lambda_\text{SM}\lambda_\text{IF}}{\bcancel{T_\text{lifetime}}\bcancel{(\lambda_\text{IF}+\lambda_\text{SM})}}\bcancel{(\lambda_\text{IF}+\lambda_\text{SM})}\bcancel{T_\text{lifetime}} $$
No.2
$$ \frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}f_\text{SM}(t)R_\text{IF}(t)F_\text{IF}(t)dt=\frac{1}{2}\lambda_\text{SM}\lambda_\text{IF}T_\text{lifetime} \tag{470.2} $$ 証明:同様に、 $$ \text{L.H.S of }(470.2)=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\lambda_\text{SM}e^{-\lambda_\text{SM}t}e^{-\lambda_\text{IF}t}(1-e^{-\lambda_\text{IF}t})dt\\ =\frac{\lambda_\text{SM}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-(\lambda_\text{SM}+\lambda_\text{IF})t}dt-\frac{\lambda_\text{SM}}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}e^{-(\lambda_\text{SM}+2\lambda_\text{IF})t}dt\\ =\frac{\lambda_\text{SM}}{T_\text{lifetime}}\left[\frac{e^{-(\lambda_\text{SM}+\lambda_\text{IF})t}}{\lambda_\text{SM}+\lambda_\text{IF}}\right]^0_{T_\text{lifetime}}-\frac{\lambda_\text{SM}}{T_\text{lifetime}}\left[\frac{e^{-(\lambda_\text{SM}+2\lambda_\text{IF})t}}{\lambda_\text{SM}+2\lambda_\text{IF}}\right]^0_{T_\text{lifetime}}\\ =\frac{\lambda_\text{SM}}{T_\text{lifetime}(\lambda_\text{SM}+\lambda_\text{IF})}\left(1-e^{-(\lambda_\text{SM}+\lambda_\text{IF})T_\text{lifetime}}\right)-\frac{\lambda_\text{SM}}{T_\text{lifetime}(\lambda_\text{SM}+2\lambda_\text{IF})}\left(1-e^{-(\lambda_\text{SM}+2\lambda_\text{IF})T_\text{lifetime}}\right)\\ \approx\frac{\lambda_\text{SM}}{\bcancel{T_\text{lifetime}}\bcancel{(\lambda_\text{SM}+\lambda_\text{IF})}}\left(\bcancel{(\lambda_\text{SM}+\lambda_\text{IF})}\bcancel{T_\text{lifetime}}-\frac{1}{2}(\lambda_\text{SM}+\lambda_\text{IF})^\bcancel{2} T_\text{lifetime}^\bcancel{2}\right)\\ -\frac{\lambda_\text{SM}}{\bcancel{T_\text{lifetime}}\bcancel{(\lambda_\text{SM}+2\lambda_\text{IF})}}\left(\bcancel{(\lambda_\text{SM}+2\lambda_\text{IF})}\bcancel{T_\text{lifetime}}-\frac{1}{2}(\lambda_\text{SM}+2\lambda_\text{IF})^\bcancel{2} T_\text{lifetime}^\bcancel{2}\right)\\ =\lambda_\text{SM}\left(\bcancel{1}-\frac{1}{2}(\bcancel{\lambda_\text{SM}}+\bcancel{\lambda_\text{IF}})T_\text{lifetime}-\bcancel{1}+\frac{1}{2}(\bcancel{\lambda_\text{SM}}+\bcancel{2}\lambda_\text{IF})T_\text{lifetime}\right)=\frac{1}{2}\lambda_\text{IF}\lambda_\text{SM}T_\text{lifetime} $$ No.1, 2から、以下のような簡便公式が得られます。
$$ \int_0^{T_\text{lifetime}}f(t)dt\approx \lambda\int_0^{T_\text{lifetime}}dt \tag{470.3} $$
$$ \int_0^{T_\text{lifetime}}R(t)dt\approx\int_0^{T_\text{lifetime}}dt \tag{470.4} $$
なお、本稿はRAMS 2024に投稿予定のため一部を秘匿していますが、論文公開後の2024年2月頃に開示予定です。