Article #121

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

フォールトトレラントタイム

posted by sakurai on July 1, 2019 #121

車両寿命間のダウン確率は、次の式のようにPMHFに車両寿命をかけたものです。 $$ M_\mathrm{PMHF}:=\frac{1}{T_\mathrm{lifetime}}\Pr\{\text{item down at }T_\mathrm{lifetime}\}\\ \therefore \Pr\{\text{item down at }T_\mathrm{lifetime}\}=M_\mathrm{PMHF}T_\mathrm{lifetime} \tag{121.1} $$ バックアップ系(SM1)に切り替わった後で、EOTTI期間走行する間のダウン確率が(121.1)以下であればよいとすれば、 $$ \Pr\{\text{backup down at }T_\mathrm{eotti}\}=\lambda_\mathrm{SM1, DPF}T_\mathrm{eotti}\le\Pr\{\text{item down at }T_\mathrm{lifetime}\}=M_\mathrm{PMHF}T_\mathrm{lifetime}\tag{121.2} $$ となり、EOTTIの範囲は前稿の規格式(3)で表されます。しかしながら、恐らくワーストケース(最短EOTTI)を求めるための条件と思われますが、厳しすぎに見えます。$t=0$でIFのフォールトが起きた前提での、バックアップ系による走行条件の計算となっています。DPFの確率ではなく、SPFの確率となるため、何桁も厳しくなります。

次に規格式(2)ですが、誤ったPMHF式がベースであるため、以下の例では誤ったEOTTIが得られています。表121.1でケース2の「(2)式の結果」が、上記のワーストと思われる「(3)式の結果」を下回っている(より厳しくなっている)こともこれを裏付けます。

まず正しいEOTTI式を(121.3)に示します。これは、2nd Editionの条件(IF/SM1共にリペアラブル)を前提としてPMHF式を求め(69.1)、その暴露時間の最大値をEOTTIとし、EOTTIについて解いた式です。 $$ T_\text{eotti}\le\frac{M_\text{PMHF}-\left[\lambda_\text{SPF}+\lambda_\text{RF}+\lambda_\text{IF,DPF}\lambda_\text{SM,DPF}(1-K_\text{MPF})T_\text{lifetime}\right]}{\lambda_\text{IF,DPF}\lambda_\text{SM,DPF}K_\text{MPF}}\\ =\frac{M_\text{PMHF}-\left[\lambda_\text{SPF}+\lambda_\text{RF}+\lambda_\text{IF,DPF}\lambda_\text{SM,DPF}(1-K_\text{IF,MPF})(1-K_\text{SM,MPF})T_\text{lifetime}\right]}{\lambda_\text{IF,DPF}\lambda_\text{SM,DPF}\left[1-(1-K_\text{IF,MPF})(1-K_\text{SM,MPF})\right]}\\ =\frac{M_\text{PMHF}-(\lambda_\text{SPF}+\lambda_\text{RF}+\lambda_\text{IF,DPF,lat}\lambda_\text{SM,DPF,lat}T_\text{lifetime})}{\lambda_\text{IF,DPF}\lambda_\text{SM,DPF}-\lambda_\text{IF,DPF,lat}\lambda_\text{SM,DPF,lat}} \tag{121.3} $$ 次に規格中の例題を(121.3)で計算し直した結果、表121.1の最下段のようになります。

表121.1
EOTTI ケース1[H] ケース2[H]
(2)式の結果 772 31
(3)式の結果 167 167
(2)式の修正結果 2,312 965

規格の2例で総合的な$K_\text{MPF}$を求めると、ケース1, 2において0.99と変わりませんが、これを振ってみた、$T_\text{eotti}$に関するグラフを図121.3に示します。(121.3)が不等式であるため、解の存在領域は曲線の下側となります。

図%%.3
図121.3 ケース1とケース2での$K_\text{MPF}$に対する$T_\text{eotti}$

ケース2では、本来965Hで良いのに31Hと厳しくなっているので、$\img[-1.35em]{/images/withinseminar.png}$

この結果はRAMS2020で発表しました。


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax. If you include an ad such as http://, it will be invalidated by our AI system.

Please enter the numbers as they are shown in the image above.