Posts Issued in May, 2016

故障分類(1)

posted by sakurai on May 31, 2016

故障分類フローチャート

前回説明したPMHFは「アイテムの車両寿命間の平均的な故障率」でしたが、この故障の中身を見ていきます。ISO26262では3重故障以上の故障については安全側故障としています。これはその確率が非常に小さいので省略可能なためです。SPFとDPFの事象は排他であるため、PMHFは(10.2)を用いてSPFのPMHFとDPFのPMHFの和となります(11.1)。ここでSPF(Single Point Failure; 1点故障)とDPF(Dual Point Failure; 2点故障)の定義を故障分類フローチャートに従って理解することが重要です。 \[ M_{PMHF}=M_{PMHF,SPF}+M_{PMHF,DPF}=\frac{1}{T_{lifetime}}\lbrack \overline{PA_{SPF}}(T_{lifetime})+\overline{PA_{DPF}}(T_{lifetime})\rbrack\tag{11.1} \]

故障分類フローチャートはISO26262Part5にも掲載されていますが、より詳細なものがPart10に掲載されています。ただ、訳が適切でなかったり、概念的に混同しやすいため、弊社ではこれをリプリントした教材を作成して販売しています(図11.1)。

図11.1
図11.1 故障分類フローチャート

その特長は、

  • 訳をわかりやすく修正
  • 確率的フローチャートであること
  • あくまで1つめの故障分類であること
  • 主機能と安全機構の切り分けの明示

等です。故障分類フローチャートで分類された故障率のうち、特にレイテント故障率は以降で大変重要になってくるため、ぜひ理解しておいていただきたいと思います。

SMの種類

ここで、2つのSMの種類に便宜上名前をつけます。規格では特にSM(Safety Mechanism)としか書かれていませんが、SMには明確にその特性の違いがあり、これはPart5またはPart10の故障分類フローチャートで定義されています。

  • 1st SM ------- 主機能が安全目標を侵害するのを防止する安全機構(Part1 1.111備考2 a))
  • 2nd SM ------ 主機能又は安全機構の故障を検出し、レイテント状態を防止する安全機構(Part1 1.111備考2 b))

規格で明確な名前の区別が無いため、現場では「レイテント状態を防止するSM」等の長い説明を毎回しなければならないためとても不便を感じています。規格で名前を定義してあればよかったのですが。

レイテント状態

規格には特に定義は掛かれていませんが、FSマイクロ株式会社では後の理解がしやすくなるため、レイテント(故障)状態を定義しています。

レイテント状態とは、エレメントA(主機能または安全機構)において、関連する1st SMにより安全目標の侵害が阻止されている状態でかつ2nd SMにより故障検出がされない状態を表します。上記故障分類チャートによれば、レイテント状態になるには以下の2つのルートが存在します。

  • 主機能が1st SMにより安全目標侵害から阻止されている場合
  • 安全機構が故障した場合

いずれのルートもオレンジの判定ボックスに到達し、そこで2nd SMにより故障検出の判定が行われます。故障のうち検出される部分はレイテント状態が解消されます。一方検出されない部分はレイテント状態のままとなります。


左矢前のブログ 次のブログ右矢

PMHFの意味

posted by sakurai on May 25, 2016

PMHFの定義式

式(10.1)はISO26262 Part10に掲載されているPMHFの式です。

\[ M_{PMHF} = \lambda_{RF} + \frac 1 2 \lambda_{M,MPF}(\lambda_{SM,MPF,l}T_{lifetime}+ \lambda_{SM,MPF,d}\tau) \tag{10.1} \]

これは安全機構が故障して次に主機能が故障する場合の式で、ISO26262 Part10に結論だけ記述がありますが、説明がほとんどありません。そのためこのブログで式の導出について説明していきたいと思います。

ところで、FSマイクロ株式会社では、(10.1)が安全機構が故障して次に主機能が故障する場合というのは誤りではないかと考えます。2項目以降はそのとおりですが、$\lambda_{RF}$は主機能が故障して安全機構が安全目標侵害を防止した残余の故障率なので、安全機構は動作していなければならないはずです。そのため、$\lambda_{RF}$は主機能の故障の際には安全機構は動作している場合に現れると考えます。

さて、PMHFとは、ランダムハードウェア故障のメトリック(数値目標)で、正確に表現すれば「アイテムの車両寿命における故障確率(=アイテムの車両寿命における不稼働率$PoF(T_{lifetime})$の時間平均)」となります。以下はISO26262規格には書かれていませんが、PMHFの定義式です。

PMHFの定義式: \[ M_{PMHF} \stackrel{def}{=} \frac{1}{T_{lifetime}}PoF_{item, T_{lifetime}} =\frac{1}{T_{lifetime}} \Pr\{\text{item is down at } T_{lifetime}\} =\frac{1}{T_{lifetime}} \overline{PA_{item}}(T_{lifetime}) \tag{10.2} \]

ここで、$\overline{PA_{item}}(t)$は時刻$t$におけるitemの時点不稼働率です。 $\overline{PA_{item}}(t)$は1から時点稼働率$PA_{item}(t)$を引いたものであり、以下の式で定義されるように、ある時刻$t$における不稼働確率(アイテムが稼働していない確率)です。

\[ \overline{PA_{item}}(t) = \Pr\{\text{item is down at } t\} \tag{10.3} \]

一方で、$PA_{item}(t)$は、修理が可能なitemにおいて、$t$までに一度も故障が起きない確率と、$t$までに故障が起き修理された後$t$までに故障が起きない確率に分けられるので、

\[ PA_{item}(t) = \Pr\{\text{item not failed in }(0, t]\} + \displaystyle \sum_{i=1}^{n} \Pr\{\text{item is repaired at }\tau_i \cap \text{item is up in }(\tau_i, t]\} \tag{10.4} \]

PMHFの意味

ここで、故障率はかなり低いため、(10.4)のうち修理される部分を無視しPMHFの定義式(10.2)に適用しすれば、

\[ M_{PMHF} \approx \frac{1}{T_{lifetime}} \Pr\{\text{item is failed in }(0, T_{lifetime}]\} =\frac{1}{T_{lifetime}} \Pr\{X_{item}\lt T_{lifetime}\} =\frac{1}{T_{lifetime}} F_{item}(T_{lifetime}) \tag{10.5} \]

式10.5の式に対して、不信頼度$F(t)$の近似式である(7.2)を用いて \[ F_{item}(t) \approx \lambda_{item}t, ~~\mbox{s.t.}~~ \lambda_{item}t \ll 1 \tag{10.6} \]

を適用すれば、次の(10.7)が得られます。 \[ M_{PMHF} \approx \lambda_{item},~~\mbox{s.t.}~~ \lambda_{item}T_{lifetime} \ll 1 \tag{10.7} \]

これにより、PMHFは$\lambda_{item}T_{lifetime} \ll 1$の場合に「アイテムの車両寿命間の平均的な故障率」とみなすことができます。


左矢前のブログ 次のブログ右矢

アイテムの故障率(2)

posted by sakurai on May 16, 2016

並列アイテム

図2
図9.1 並列アイテムのRBD

並列アイテムとは、上図のように、RBDを書いたときにアイテムを構成するエレメントが並列になっている場合のアイテムです。この場合(1 out of n)は冗長性を持っており、全てのエレメントが故障しなければ、アイテムは故障しません。

このように、信頼度から考えると冗長が良いに決まっているのですが、2冗長でもコストが倍増することになります。従って、いかに冗長のコストを抑えるかが、良い設計の鍵となります。

この場合並列アイテムの信頼度は各エレメントの信頼度の和、と単純にはなりません。その理由は、各事象の確率の和が和事象の確率になるのは、各事象が排他の場合のみであることです。一般に各事象は独立であっても排他ではありません。

例えばエレメント1とエレメント2が99%の信頼度だとすれば、信頼度を加え合わせると0.99+0.99=1.98の確率というわけのわからない数字となります。言うまでもなく、確率は0から1の間の値の値を取るはずです。これはエレメント1とエレメント2が共に動作している確率のダブルカウントが原因なので、先の確率の和である1.98から同時に動作している確率0.99*0.99を引くと並列アイテムの信頼性が求められ、1.98-0.99*0.99=0.9999、99.99%となります。

これを一般化し、並列アイテムの信頼度は包除原理から、 \[ R_{item}(t)=\coprod_{i=1}^n R_i(t)=\sum_{i=1}^n R_i(t)-\sum_{i\lt j}^n R_i(t)\cdot R_j(t)+\cdots+(-1)^{n-1}\prod_{i=1}^n R_i(t)\tag{9.1} \]

のように複雑な式となるため、アイテムの不信頼度を考えたほうが楽です。すると、並列アイテムの不信頼度は全てのエレメントの不信頼度の積となるため、

並列アイテムの不信頼度の式: \[ F_{item}(t)=F_1(t)\cdot F_2(t)\cdot\cdots\cdot F_n(t)=\prod_{i=1}^n F_i(t)\tag{9.2} \]

であり、これはFTAの計算時に使用するため重要な式となります。

以降では教科書的に信頼性を求めることにし、(9.2)を信頼度で表わせば、 \[ F_{item}(t)=1-R_{item}(t)=\prod_{i=1}^n[1-R_i(t)]\tag{9.3} \]

従って並列アイテムの信頼度は各エレメントの故障率で表すことができ、 \[ R_{item}(t)=1-\prod_{i=1}^n[1-R_i(t)]=1-\prod_{i=1}^n(1-e^{-\lambda t})\tag{9.4} \]

となります。


左矢前のブログ 次のブログ右矢

アイテムの故障率(1)

posted by sakurai on May 9, 2016

直列アイテム

図1
図8.1 直列アイテムのRBD

直列アイテムとは、上図のように、RBD(信頼性ブロック図)を書いたときにアイテムを構成するエレメントが直列になっている場合のアイテムです。この場合は冗長性を持たないため、どのひとつのエレメントが故障しても、それによりアイテムが故障すると考えます。この場合のアイテムの信頼度は各エレメントの信頼度の積となります。 \[ R_{item}(t)=R_1(t)\cdot R_2(t)\cdot\cdots\cdot R_n(t)=\prod_{i=1}^n R_i(t)\tag{8.1} \]

ここで、信頼度を故障率で表す(4.2)を用いれば、(8.2)となります。 \[ R_{item}(t)=e^{-\lambda_{item}t}=e^{-\lambda_1 t}\cdot e^{-\lambda_2 t}\cdot\cdots\cdot e^{-\lambda_n t} =e^{\sum_{i=1}^n-\lambda_i t}\tag{8.2} \]

従って、アイテムの故障率は(8.3)のように各エレメントの故障率の和で求められます。 \[ \therefore\lambda_{item}=\sum_{i=1}^n \lambda_i\tag{8.3} \]

教科書には何故か信頼度の式しか出てこないようですが、後でFTAの計算を行うときに不信頼度が重要となるため、ここで掲載しておきます。(8.1)に(2.5)を代入して、以下の(8.4)が得られます。

直列アイテムの不信頼度の式: \[ F_{item}(t)=1-\prod_{i=1}^n[1-F_i(t)]\tag{8.4} \]


左矢前のブログ 次のブログ右矢