Article #21

既に発行済みのブログであっても適宜修正・追加することがあります。
Even in the already published blog, we may modify and add appropriately.

FTA(2)

posted by sakurai on October 21, 2016

レアイベント近似

アイテムが故障する確率=トップ事象確率を求めるのがFTAの役割であるため、基事象の確率を求め、それを積算します。それぞれのイベントを$e_i$で表し、イベントの確率を$P\{e_i\}$で表すとき、MCSが$\{1\},\{2\},\{3,4,5\},\{6\},\{7,8\}$で表されるTOP事象の侵害確率P{TOP}は、直列アイテムでの不信頼度の(8.4)と並列アイテムでの不信頼度の(9.2)とを用いて、(21.1)と表されます。 \[ P\{TOP\}=1-(1-P\{e_1\})(1-P\{e_2\})(1-P\{e_3\}P\{e_4\}P\{e_5\})(1-P\{e_6\})(1-P\{e_7\}P\{e_8\})\tag{21.1} \]

ここで、(21.1)の比較的小さい値の項を省略した、ORを加算、ANDを乗算とする計算で求めるレアイベント近似方法があります。 \[ P\{TOP\}\approx P\{e_1\}+P\{e_2\}+P\{e_3\}P\{e_4\}P\{e_5\}+P\{e_6\}+P\{e_7\}P\{e_8\}\tag{21.2} \]

アイテムの故障率(2)で議論したように、これが可能なのは基事象確率が低い場合です。本来はダブルカウント分の確率を引くべきところ、ダブルカウント分の確率が小さく無視可能である場合に限り、レアイベント近似が成立します。


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax.

Please enter the letters as they are shown in the image above.
Letters are not case-sensitive.