Posts Issued in May, 2019

posted by sakurai on May 19, 2019

米国ロチェスター大学の資料そのキャッシュによれば、 ランダムプロセス$\eta_t$において、ステート空間を$i, j=0,1,2,...,\in\mathcal{E}$について、以下の式を満足する場合に、ランダムプロセス$\eta_t$は連続時間マルコフ連鎖(CTMC)となります。 $$ \Pr\{\eta_{(t+s)}\in j\ |\ \eta_t\in i, \eta_u\in x_u, u\lt t\}=\Pr\{\eta_{(t+s)}\in j\ |\ \eta_t\in i\} $$ 遷移する確率が、過去の時刻$u$での状態に依存せず、現在時刻$t$での状態にのみ依存することを表します。

CTMCである$\eta_t$において、ステートiからjへの瞬間遷移確率関数(Instantanous Transition Probability Function)$P_{ij}$の式は以下のようになります。ただし、元の式を「信頼性関係式の定義式の表現」で導入した記法に変更しています。 $$ P_{ij}(t):=\Pr\{\eta_{(t+dt)}\in\mathcal{j}\ |\ \eta_{t}\in\mathcal{i}\}=q_{ij}dt+o(dt)\tag{102.1} $$ $q_{ij}$は遷移率(Transition Rate)です。ランダムプロセス$\eta_t$において、確率変数$X$を無故障稼働時間とします。$\mathcal{M}$を稼働状態のサブセットとし、$\mathcal{P}$を不稼働状態のサブセットとすれば、$X=\inf\{t:\eta_{t}\in\mathcal{P}\}$と示すことができます。

稼働状態$\mathcal{M}$から不稼働状態$\mathcal{P}$への遷移を考えると、(102.1)は、 $$ P_\mathcal{MP}(t)=\Pr\{\eta_{(t+dt)}\in\mathcal{P}\ |\ \eta_{t}\in\mathcal{M}\}=q_\mathcal{MP}dt+o(dt)\tag{102.2} $$ となりますが、これと前記事の微小ダウン確率形式と比較し、 $$ \Pr\{\eta_{(t+dt)}\in\mathcal{P}\ |\ \eta_{t}\in\mathcal{M}\}=q_\mathcal{MP}dt+o(dt)=\varphi(t)dt\tag{102.3} $$ すなわち、単位時間あたりの稼働状態$\mathcal{M}$から不稼働状態$\mathcal{P}$への遷移率$q_\mathcal{MP}$は、$o(dt)\approx 0$の場合のダウン率$\varphi(t)$にほかなりません。

ここで、条件付き確率の式から(102.3)の両辺に状態確率$\Pr\{\eta_{t}\in\mathcal{M}\}$をかけると$PUD$が求まります。$PUD$について、$0$から$T_\text{lifetime}$まで$t$で積分し(102.2)を用いれば、 $$ \int_0^{T_\text{lifetime}}P_\mathcal{MP}(t)\Pr\{\eta_{t}\in\mathcal{M}\} =\int_0^{T_\text{lifetime}}\Pr\{\eta_{(t+dt)}\in\mathcal{P}\ |\ \eta_{t}\in\mathcal{M}\}\Pr\{\eta_{t}\in\mathcal{M}\}\\ =\int_0^{T_\text{lifetime}}\Pr\lbrace\eta_{(t+dt)}\in\mathcal{P}\cap \eta_{t}\in\mathcal{M}\rbrace=\int_0^{T_\text{lifetime}}q(t)dt =Q({T_\text{lifetime}})\tag{102.4} $$ 前記事の平均PUD式(66.13)に基づき(102.4)の両辺を$T_\text{lifetime}$で割り、SPFになる平均PUDを$\overline{q_{\mathrm{SPF}}}$で表せば、 $$ \overline{q_{\mathrm{SPF}}}=\frac{1}{T_\text{lifetime}}Q({T_\text{lifetime}})=\frac{1}{T_\text{lifetime}}\int_0^{T_\text{lifetime}}\Pr\{\eta_{(t+dt)}\in\mathcal{P}\ |\ \eta_{t}\in\mathcal{M}\}\Pr\{\eta_{t}\in\mathcal{M}\}\\ =\img[-1.35em]{/images/withinseminar.png} \tag{102.5} $$ これにより、CTMCを用いた平均PUDを求める基本式が求まりました。PMHFを求めるには、(102.5)式を駆使していきます。

弊社ではPMHFに関する論文をRAMS 2020に投稿中であり、そのため、最新の研究#103~108を一旦非開示としました。2019年10月中に採択の決定が行われる予定であり、その後に開示する予定です。


左矢前のブログ 次のブログ右矢

Kパラメータは条件付き確率か(3)

posted by sakurai on May 12, 2019

前稿(100.1)において、時刻$t$から$t+dt$において、IFのフォールトがVSG抑止される微小確率を求めると、 $$ \Pr\{\mathrm{IF\ prevented}\cap\mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ =\Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ \cdot\Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}\cdot\Pr\{\mathrm{IF\ not\ failed\ before\ }t\}\\ =K_{\mathrm{FMC,RF}}(t)\lambda_{\mathrm{IF}}R_{\mathrm{IF}}(t)dt \tag{101.1} $$ ここで、 $$ \Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ at\ }t\cap\mathrm{IF\ not\ failed\ before\ }t\}=K_{\mathrm{FMC,RF}}(t)\\ \Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}=\lambda_{\mathrm{IF}}dt\\ \Pr\{\mathrm{IF\ not\ failed\ before\ }t\}=R_{\mathrm{IF}}(t) $$ となりましたが、「DCはSMのアーキテクチャにより決定される」ことを前提とし、フォールト発生とフォールト検出は独立な事象と考えれば、同じ確率式は、 $$ \Pr\{\mathrm{IF\ prevented}\cap\mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ =\Pr\{\mathrm{IF\ preventable}\}\cdot\Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}\\ \cdot\Pr\{\mathrm{IF\ not\ failed\ before\ }t\}=K_{\mathrm{FMC,RF}}\lambda_{\mathrm{IF}}R_{\mathrm{IF}}(t)dt \tag{101.2} $$ ここで、 $$ \Pr\{\mathrm{IF\ preventable}\}=K_{\mathrm{FMC,RF}}\\ \Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}=\lambda_{\mathrm{IF}}dt\\ \Pr\{\mathrm{IF\ not\ failed\ before\ }t\}=R_{\mathrm{IF}}(t) $$ と求められます。従って、(101.1)の$\Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ at\ }t\}$という確率的な$t$の関数を、(101.2)の$\Pr\{\mathrm{IF\ preventable}\}$という定数に置き換えることができます。

2nd SMの属性である$K_{\mathrm{FMC,MPF}}$についても同様の議論が成り立ち、Kパラメータは条件付き確率ではなく、アーキテクチャ的に決定している能力(定数)として扱います。結論として、

$$ K_{\mathrm{IF,FMC,RF}}:=\Pr\{\mathrm{IF\ preventable}\}\tag{101.3} $$ $$ K_{\mathrm{IF,FMC,MPF}}:=\Pr\{\mathrm{IF\ detectable}\}\tag{101.4} $$ $$ K_{\mathrm{SM,FMC,MPF}}:=\Pr\{\mathrm{SM\ detectable}\}\tag{101.5} $$


左矢前のブログ 次のブログ右矢

Kパラメータは条件付き確率か(2)

posted by sakurai on May 10, 2019

(99.1)の定義は便利に使用できます。例えば時刻$t$から$t+dt$において、IFのフォールトがVSG抑止される微小確率を求めると、条件付き確率のチェインルールを用いれば、 $$ \Pr\{\mathrm{IF\ prevented}\cap\mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ =\Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ \cdot\Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}\cdot\Pr\{\mathrm{IF\ not\ failed\ before\ }t\}\\ =K_{\mathrm{FMC,RF}}(t)\lambda_{\mathrm{IF}}R_{\mathrm{IF}}(t)dt \tag{100.1} $$ と、IFに関する故障率や信頼度関数で表すことができます。

しかしながら、Kパラメータ、具体的には$K_{\mathrm{FMC,MPF}}$や$K_{\mathrm{FMC,RF}}$が定数だと矛盾が起きます。まず、条件が確率的に作用することにより、例えば1回目にはVSG抑止されたフォールトが、2回目にはVSG抑止されないことが起こりえます。あるいは1回目にはリペアされたフォールトが2回目にはリペアされないことが起こりえます。検出が確率的になされるからといって、同じ故障が検出されたりされなかったりするのは、なんとなく納得がいきません。

次に問題になるのが、このKは定数にはならないことです。例えば、VSG抑止率について考えると、長時間が経ちVSG抑止を長く続けると、VSG抑止されないフォールト確率(不信頼度)は上昇し続けます。明らかに、VSG抑止されるフォールトの確率が高まりそうであるのに、これが一定であるとは感覚に反します。

フォールト検出のたびにサイコロで検出を決めているならそうなりますが、一般的には診断カバレージ(Diagnostic Coverage; DC)はSMのアーキテクチャにより決定され、確率的には検出されないとここでは考えることにします。そうすれば、上記の問題点は解消されます。


左矢前のブログ 次のブログ右矢