Article #100

既に発行済みのブログであっても適宜修正・追加することがあります。
Even in the already published blog, we may modify and add appropriately.

Kパラメータは条件付き確率か(2)

posted by sakurai on May 10, 2019

(99.1)の定義は便利に使用できます。例えば時刻$t$から$t+dt$において、IFのフォールトがVSG抑止される微小確率を求めると、条件付き確率のチェインルールを用いれば、 $$ \Pr\{\mathrm{IF\ prevented}\cap\mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ =\Pr\{\mathrm{IF\ prevented}\ |\ \mathrm{IF\ failed\ in\ }(t, t+dt]\cap\mathrm{IF\ not\ failed\ before\ }t\}\\ \cdot\Pr\{\mathrm{IF\ failed\ in\ }(t, t+dt]\ |\ \mathrm{IF\ not\ failed\ before\ }t\}\cdot\Pr\{\mathrm{IF\ not\ failed\ before\ }t\}\\ =K_{\mathrm{FMC,RF}}(t)\lambda_{\mathrm{IF}}R_{\mathrm{IF}}(t)dt \tag{100.1} $$ と、IFに関する故障率や信頼度関数で表すことができます。

しかしながら、Kパラメータ、具体的には$K_{\mathrm{FMC,MPF}}$や$K_{\mathrm{FMC,RF}}$が定数だと矛盾が起きます。まず、条件が確率的に作用することにより、例えば1回目にはVSG抑止されたフォールトが、2回目にはVSG抑止されないことが起こりえます。あるいは1回目にはリペアされたフォールトが2回目にはリペアされないことが起こりえます。検出が確率的になされるからといって、同じ故障が検出されたりされなかったりするのは、なんとなく納得がいきません。

次に問題になるのが、このKは定数にはならないことです。例えば、VSG抑止率について考えると、長時間が経ちVSG抑止を長く続けると、VSG抑止されないフォールト確率(不信頼度)は上昇し続けます。明らかに、VSG抑止されるフォールトの確率が高まりそうであるのに、これが一定であるとは感覚に反します。

フォールト検出のたびにサイコロで検出を決めているならそうなりますが、一般的には診断カバレージ(Diagnostic Coverage; DC)はSMのアーキテクチャにより決定され、確率的には検出されないとここでは考えることにします。そうすれば、上記の問題点は解消されます。


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax.

Please enter the letters as they are shown in the image above.
Letters are not case-sensitive.