Article #249

既に発行済みのブログであっても適宜修正・追加することがあります。
We may make changes and additions to blogs already published.

BSVの設計トライアル(16)

posted by sakurai on April 28, 2020 #249

ベクター配列によるリターンスタック

前稿までのリターンスタックrsはレジスタファイルで構成しましたが、別法のベクター配列を試してみます。 まずベクターをインポートします。

import Vector::*;

次に、リターンスタックrsを3段インスタンシエートします。

   // return stack
   Vector#(3, Reg#(State_t)) rs <- replicateM(mkRegU);

さらにマクロ命令定義を書き換えます。ベクター配列はrs[sp]として扱えるので、直感的に分かりやすいです。

`define call(SUB)                    `_pushNext; state <= State_t {func:SUB, step:S0}
`define _pushNext                   rs[sp] <= State_t {func:state.func, step:nextStep()}; sp <= sp + 1
`define return                          state <= rs[sp-1]; sp <= sp - 1
`define next                             state.step <= nextStep()

説明は表248.1と同一です。これを用いて、前稿の検証FSMを実行してみます。

\$ bsc -sim -u TestFSM3.bsv
checking package dependencies
compiling TestFSM3.bsv
code generation for mkTestFSM starts
Elaborated module file created: mkTestFSM.ba
All packages are up to date.
\$ bsc -sim -e mkTestFSM -o mkTestFSM
Bluesim object created: mkTestFSM.{h,o}
Bluesim object created: model_mkTestFSM.{h,o}
Simulation shared library created: mkTestFSM.so
Simulation executable created: mkTestFSM
\$ ./mkTestFSM -m 15 -V dump.vcd | tee result
L1 S0
L1 S1
 L2 S0
 L2 S1
 L2 S2
  L3 S0
  L3 S1
   L4 S0
   L4 S1
  L3 S2
 L2 S3
 L2 S4
L1 S2
L1 S2
\$

正しく実行することが検証できました。波形を図249.1に示します。内部信号を見ると、rs_0, rs_1, rs_2という3個のレジスタインスタンスが生成されています。これが3段のリターンスタックを構成しています。

図%%.1
図249.1 検証用FSMのBsim波形(ベクター配列使用)

合成結果

Vivadoによる合成結果は21 LUTのサイズでした。レジスタファイルよりもベクター配列のほうが、わずかに小さくなることが分かりました。レジスタファイルは下位モジュールのレジスタファイルをインスタンスする必要がありますが、ベクター配列は上記のようにレジスタが展開されるだけです。従って、インタフェースが簡略化されるため、小さくなると考えられます。


左矢前のブログ 次のブログ右矢

Leave a Comment

Your email address will not be published.

You may use Markdown syntax.

Please enter the letters as they are shown in the image above.
Letters are not case-sensitive.